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Abstract

This study proposes a practical technique to identify surface material and di-

mensions for simulating room acoustics parameters e.g. reverberation time. The

surface materials and dimensions are obtained from System 1 and System 2, each

of which uses photographic images. The study on System 1 uses a Gray Level

Co-occurrence Matrix (GLCM) and a Feed Forward Neural Network (FFNN) to

identify material surfaces. By identifying material surfaces, absorption coeffi-

cients of materials are also determined. Six types of material surfaces such as

a wall, a door, a floor, a window, a ceiling and a carpet taken from Oita Uni-

versity rooms are employed. They are captured by using an ordinary camera

which is a digital single-lens reflex (DSLR) with 50 mm and f 2.8 lens. The total

number of images captured are 36 with the proportions of images are as follows;

surface wall = 69 images, surface door = 71 images, surface floor = 66 images,

surface window = 56 images, surface ceiling = 67 images, and surface carpet =

40 images. Subsequently, all the images are computed in GLCM to obtain four

Haralick coefficients; contrast (cont), correlation (corr), angular second moment

(ASM) and homogeneity (hom). Haralick’s coefficients are referred to as coeffi-

cient values in this study are too wide to be processed because of variations of

brightness and texture features. To overcome this problem, a limitation for each

coefficient value is made (x̄− sv) and (x̄+ sv), respectively, for a low limitation

and a high limitation. The limitations of these coefficient values are represented
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in FFNN as input neurons and for the output neuron they are type of material

surfaces. By identifying the material surfaces, we are able to ascertain the ab-

sorption coefficients of surfaces simultaneously. The results indicate that a good

correlation coefficient R ≥ 0.90 with MSE ≤ 0.07 are provided by System 1 to

identify material surfaces. System 2 used a Dimension Vision Predictor (DVP)

with the author’s “ruler methods” to identify the dimensions of objects. With

similar camera uses in System 1, two images are necessary to capture one view.

The view of the images displays the ruler and objects to be measured. A ruler

is used for standardizing the scale of the objects in the images. Subsequently,

both images are fed into DVP to identify the object dimensions. The objects

that need to be measured are marked with the corresponding points. To measure

one dimension, two corresponding points are connected to make a single line.

From the line, DVP identifies the dimension. To investigate the repeatability

of System 2, examinations are conducted using 100 objects. The results reveal

that the System 2 is highly capable of identifying object dimensions with corre-

lation coefficient R ≥ 0.90 and MSE ≤ 0.07. From the results, System 2 shows

that it has the potential to identify object dimensions. A FFNN technique for

estimating room reverberation times is developed. 700 samples of reverberation

times obtained using Finite Element Analysis (FEA) are used for FFNN learning

processes. In addition 35 unseen data are implemented to confirm the capability

of FFNN estimation performance. The results indicate FFNN provides high cor-

relation coefficient R ≥ 0.90 with MSE ≤ 0.0004 s. To investigate the reliability

of FFNN, three conditions in an actual room are created. Reverberation time

estimation by FFNN is compared with reverberation time by FEA and reverber-

ation time by measurement. From analysis, MSE between reverberation times

using measurement with reverberation times using FFNN are more than 0.002 s.

On the other hand, MSE between reverberation times using measurement with

reverberation times using FEA are more than 0.005 s. A series of measurement

in four practical rooms using both systems are conducted to investigate identi-
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fication capability are conducted capability of the systems. An examination of

System 1 verified a good correlation coefficient R ≥ 0.90 with MSE ≤ 0.07 s.

Meanwhile, System 2 yields a high correlation coefficient R ≥ 0.90 with MSE ≤

0.2 s. Finally, reverberation times for four practical rooms were conducted by

using FEA with the important parameters obtained from System 1 and System

2. Sufficient agreements were exhibited by comparing the reverberation times

obtained by FEA using both Systems (RTFEA system) with reverberation times

obtained by FEA using actual absorption coefficients and dimensions (RTFEA ac-

tual). They yielded practical results with correlation coefficient R ≥ 0.85 with

MSE ≤ 0.008 s. In conclusion, a practical technique to identify surface mate-

rials and dimensions using photographic images yielded practical results. With

some improvements such as adding more Haralick coefficients and standardize

room illumination, the techniques will be more accurate, effective and practical

when applied in the actual rooms. Furthermore, it is useful for simulating room

acoustics parameters such as FEA, BEA, Ray tracing and so on.
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Chapter 1.

Introduction

1.1. Background of Study

Absorption coefficients and dimensions of rooms are important parame-

ters that are useful in predicting the room acoustics paramaters (e.g. reverbera-

tion time) that are necessary for use with theoritical technique such as Sabine [1],

Eyring [2], Millington [3], Fitzroy [4], and Empirical [5] and computational tech-

nqiue such as Ray Tracing [6, 7], Finite Element Analysis [8, 9], and Boundary

Element Analysis [10, 11].

Generally, absorption coefficients are derived from physical measure-

ments either by using an impendence tube method or a reverberation room

method which requires special equipment, skills and more time consumption.

Therefore, several reports have proposed new techniques for predicting the ab-

sorption coefficient without using physical equipment such as the following;

1. Min et al. [12] used neural network to estimate three different absorption

coefficients of perforated wooden panel which are douglas fir (DF), spure

fir pine (SFP), and western red cedar (WRC) with different backing layer
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namely no backing material, glass fiber backing and nanofiber backing at-

tach on the panel. However, this work focuses only perforated panel.

2. Hodgson and Scherebnyj [13] developed a technique to estimate multi ab-

sorption coefficients of eight types of surfaces in classroom for University

British Columbia (UBC) from early-decay time and multivariable linear-

regression. The eight types of surfaces were; i. hard surfaces, ii. paneled

surfaces, iii. glued-on acoustical tiles, iv. suspended acoustical ceiling, v.

carpeted surfaces , vi. upholstered seats , vii. porous absorbers , viii. and

Helmholtz-resonator absorbers

This study conducted calculation to obtain absorption coefficients. It was

useful for UBC classroom and appropriate for those experts in acoustics

fields.

3. A study from Hodgson [5] proposed empirical technique to predict of speech

levels and reverberation in classroom. He used multi-variable linear regres-

sion technique to develop an equation. The equations used are;

EDT1 = 1.4395 + 0.0034LW −5.05αl+ 0.1632refl−0.1973absdist+ 0.2981basic

(1.1)

EDT1 = 0.8744+0.00221LW+0.303refl+0.4116basic−0984absorb−0.8044upseat

(1.2)

Table 1.1 shows parameters used on his work. Parameters from refl to

upseat are obtained from references or from experience. Thus, this technique is

useful for expert in acoustic fields.

Overall, all the studies proposed new techniques to obtain absorption

coefficients but it is unsuitable for persons who not expert in acoustics fields.
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Table 1.1.: Parameters used in the empirical prediction models, and ranges of
values in datasets

Parameter Description Unit Database Range

L.W classroom length x width (i.e floor area) m2 36.5 to 484.8

L classroom length m 4.4 to 24.0

H classroom height m 2.2 to 8.0

fwdist distance from source to front wall m 0.44 to 3.2

αl average surface-absorption at 1kHz - 0.06 to 0.29

logαl log10(αl) - -1.22 to -0.54

refl Beneficial room shape, reflector?: no=0, yes=1 - 0 and 1

absdist Benificial absorption distrubition?: no=0, yes=1 - 0 and 1

basic absence of sound-absorption features?: no=0, yes=1 - 0 and 1

absorp Extent of absorbent ceiling/wall treatment: full wall or ceiling - 0.0 to 1.0

upseat upholstered seating?: no=0, yes=1 - 0 and 1

While, dimensions are obtained from physical measurements such as laser

or tape measurements. CAD drawings can produce room dimensions but it re-

mains necessary to take measurements in situations where no drawing is avail-

able. Lately, 3D scanner technology is widely used to estimate room dimensions

[14, 15, 16]. Although such scanners provide precise measurements, they are

expensive and require long post processing.

To identify parameters of rooms, two simple systems using photographic

images are proposed in this work. Three techniques are used to build the systems:

i. a Gray Level Co-occurrence Matrix (GLCM); ii. a Dimension Vision Predictor

(DVP); and iii. a Feed-Forward Neural Network (FFNN). These techniques yield

two systems. System 1 uses GLCM and FFNN to identify room material surfaces.

By identifying such materials, corresponding absorption coefficients are also given.

System 2 uses DVP to identify room dimensions.

The accuracy of the two systems is examined by using actual rooms to

investigate the identification capability of the two systems. The absorption coef-

ficients and dimension identification from the two systems are used to compute

reverberation times of actual rooms.

As known, reverberation times is one of the important acoustics pa-
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rameters for rooms. It is recommended that the reverberation time, especially

classroom should be less than 0.6 s and 0.7 s for 200 m3and 300 m3respectively,

at one-octave-band-pass-filtered impulse responses average between 500 Hz and

1 kHz. [17]. In general, three factors affect the reverberation time values; vol-

ume, proportion (shape) and absorption coefficient of mterial surface. Practically,

measuring technique using ISO 3382 [18] is commonly used to obtain the rever-

beration times because it offer accurate results. However, it is impossible to

measure a room in under construction or nonexisted (on paper design). Theoret-

ical technique such as Sabine and Eyring can be used but it is compromised for

non-diffuse and non-uniform surface absorption coefficient surroundings. Many

researchers have proposed new methods which are computational technique such

as Ray-Tracing, Finite Element Analysis and Boundary Elopement Analysis such

as to surpass those kinds of lacking on the Sabine and Eyring [19, 20, 21]. Nev-

ertheless, Ray-Tracing, Finite Element Analysis and Boundary Element Analysis

typically require more times to analyze. In this study we used FFNN because it

is able to give the less time of analysis and has friendly user interface.

To develop FFNN, training databases are essential. To achieve that,

FEA is used to simulate reverberation time’s database FFNN training process.

The FEA was chosen because of high accuracy, especially in the lower frequen-

cies (125 kHz to 1 kHz) regions. After the development of FFNN is completed,

it will be used for estimating the reverberation times at actual rooms. FFNN

needs parameters to estimate the reverberation times. Therefore, the estimation

parameters from System 1 and System 2 are used. Subsequently, the estima-

tion reverberation times from FFNN are compared FEA with both using same

absorption coefficients, and dimension obtained from System 1 and System 2.
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1.2. Objectives

The objectives of this study are;

1. To propose a practical systems for estimating the material surfaces and

dimensions of room that can be used for simulating room sound field,

2. To develop Feed Forward Neural Network to estimate the reverberation

times of room, and

3. To compare the reliability between Feed Forwad Neural Network and Finite

Element Analysis in estimating reverberation times of room using parameter

from practical systems .

1.3. Scopes

The scopes that are set to achieve the main objectives are listed as

follows:

1. Oita University rooms were selected as the scope of the study. They were

used for collecting database to develop systems and were also used for in-

vestigating the capability of systems at actual rooms.

2. Only six material surfaces were employed in this study in order to establish

the concept of estimating material surface.

3. Two computational techniques FFNN and FEA were used to simulate the

reverberation times of rooms.
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1.4. Significant of the Study

Generally, to identify an absorption coefficient, conducting physical mea-

surements are necessary. To perform such measurements, it is necessary to use

special equipment and to follow complicated procedures, which are time consum-

ing, and expensive. The measurement only can be conductud by an expert in the

acoustic field. Similar problems are also occurred at room dimensions identifying

if the objects are difficult to measure i.e. objects is located at a high place. To

surmount both problems, the author develops systems that capable to estimate

absorption coefficients and dimension of objects using photographic images. By

using these systems, we can ascertain room parameters in a room field easily,

rapidly, and at a low cost. It is also useful, especially when an expert on acous-

tics in not available. By System 1 and System 2 estimations, the acoustic fields

of room i.e reverberation times able to simulate using approximate techniques

(theoretical or computational).

1.5. Outcome of the Study

As an outcome, it is expected that the System 1 will be able to identify

the room material surfaces. Simultaneously, we are also capable of ascertaining

the room absorption coefficients. To identify the material surfaces, this system

gave results in classification numbers from 1 to 5, which each number represents

the material surface. From that number, then we can identify the types of mate-

rial surfaces and absorption coefficients.

Meanwhile, it is expected that System 2 will be able to identify the

dimension of any objects. However, for room acoustical, the room dimensions are

the objects that supposed to be identify.
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By using both systems, it can be used to simulate the actual rooms’ re-

verberation times whether using theoretical techniques and computational tech-

niques. For investigating the capability for estimating the actual room parame-

ters, in this study FFNN and FEA are adopted for simulating the rooms’ rever-

beration times. Then, the results from FFNN and FEA are compared.

1.6. Limitations of the Study

The limitations of this study are as followS;

1. It can only identify the material surfaces depending on the database of

material surfaces used. If more databases of material surfaces were used,

then more material surfaces can be identified.

2. Generally, the real absorption coefficients of material surfaces in rooms de-

pend on the material thickness, presence or absence of an air layer and

absorptive layer, and so on. Therefore, it is difficult to obtain a real ab-

sorption coefficients from only a surface form image. For practical usage,

the author refers to related reports of the absorption coefficient.

3. Training database of reverberation times obtained from FEA is used for

FFNN training process. To simulate training database of reverberation

time using FEA, this study uses only eight rooms with difference volumes.

In simulation, six absorption coefficients of material surface of wall, door,

floor, window, ceiling and furniture are considered. Generally, absorption

coefficient’s values are 0 to 1, which depending on the type of material either

reflective of absorptive. To consider all values, it will increase the computing

time and cost on FEA. Thus, the author only uses two conditions; dead and

live which respectively presents the maximum values and minimum values

of the absorption coefficient for each material surface.
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1.7. Flow of the Systems

There are two kinds of systems that brings significance to the research;

System 1 and System 2. As mentioned before, System 1 is used to identify the

material surfaces at the same time absorption coefficients are obtained. Mean-

while, System 2 is used to identify room dimensions. As a result, these systems

can be implemented after their developments are completed. The results from

System 1 and System 2 can be used in theoritical technqiue or computational

techniqie. Here, FFNN and FEA are used to estimate the reverberation times of

room using parameters obtained from System 1 and System 2. The FFNN and

FEA results are compared to investigate the reliability in estimating reverber-

ation times. Detail explanations of each step of methodology are shown in Fig

1.1.
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Chapter 2.

Theoretical Descriptions

2.1. Introduction

This chapter discusses GLCM, DVP, and FFNN which are the tech-

niques used in this study. Furthermore, the FEA is also discussed in this chapter

which is used to simulate the room reverberation times.

2.2. Absorption Coefficient

Absorption coefficient is a fraction of incident sound intensity, which

is either absorbed or transmitted. Absorption coefficient is useful when using

theoretical or computation technique to evaluate the growth and decay of sound

energy in the room. The value of an absorption coefficient is depended on the

type of sound incident on the material surfaces, i.e. normal incidence, oblique

incidence and random incidence as shown in Figure 2.1. Normal incidence is when

the sound incident angle is 0o, while, oblique incident is when the sound incident

angle to be at a certain angle, and random incidence is when the sound incidence
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(a) normal incidence (b) oblique incidence (c) random incidence

Figure 2.1.: Type of Sound Incidence

to be at all angles. These incidences can be expressed as follows [22],

α = 1− (rp)2 = 1−
(
n− 1
n+ 1

)2
(2.1)

αθ = 4rncosθ
(rncosθ + 1)2 + (xncosθ)2 (2.2)

αs =
´ π

2
0 αθsinθcosθdθ´ π

2
0 sinθcosθdθ

=
ˆ π

2

0
αθsin (2θ) dθ (2.3)

Generally, the value of absorption coefficients is given between 0 and 1,

where 1 is a perfect absorption, and 0 is a perfect reflector.

2.3. Reverberation times

Reverberation is phenomena occur when the sound source stop, the

sound energy still be heard for some time until sound energy decays away to

inaudibility . To compute reverberation mathematically, the reverberation time

is defined as the time required for the average sound energy density to decay by 60

11



Figure 2.2.: Example sound pressure level in a room decays in time

dB after the sound source is stopped as illustrated in Figure 2.2. Sabine [1] who

studied the phenomena was proposed equation to compute reverberation time.

Reverberation time has been used as an important indicator of room acoustic

characteristic or auditory environment of room.

T60[s] = 0.161V
A

(2.4)

A[m2] =
∑

Sα (2.5)

where V (m3) is volume of the room, A (m2) is the total absorption coefficients,

S is total surface area in side the room, and α is average absortiom coefficient.
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2.4. Gray Level Co-occurrence Matrix (GLCM)

2.4.1. Introduction of Image Texture

The texture feature is defined as a function of the spatial variation in

pixel intensity [23]. The Image texture is one of the important characteristics

in identifying objects or regions of interest in an image [24]. It is contained of

information of size, shape, color and orientation of the elements of the pattern.

The differences between two image textures are depending on the information.

Base on that information, many techniques can be applied such as multiplicative

auto regressive random fields, fourier transforms of the cosine transforms, fractal

dimension, wavelet-based Information, ridgelet-based Infromation, and so on to

obtain the analysis of the texture features.

2.4.2. Theory of Gray Level Co-Occurrence Matrix (GLCM)

Recently, there are numerous approaches available such as multiplicative

auto regressive random fields, fourier transforms of the cosine transforms, fractal

dimension, wavelet-Based Information, ridgelet-Based Infromation, and so on to

analyze the texture features. Although, such techniques provide different advan-

tages in terms of capability analysis texture features, GLCM is the best approach

in terms of its higher texture analysis accuracy. [25].

GLCM is one of the texture feature analysis which can compute the

texture features of image by second order statistical approach [26]. It has been

successfully implemented to analyze the texture features in many fields [27, 28,

29, 30, 31]. To date, no reported study has applied GLCM for acoustic fields.

A GLCM is generated from a square matrix (Ng) with size is determined

according to the gray levels of pixels of an image that can be captured using a
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Figure 2.3.: Example of directions between two image pixels (d = 0; θ =
0o, 45o, 90o, 135o)

digital camera. An image includes numerous pixels, each of which presents a level

of gray. A square matrix Ng is formed at these pixels.

A GLCM comprises numerous elements, each designated as probability

Pd,θ(i, j). The Pd,θ(i, j) represents pixels with gray levels i and j, which are

counted at certain distance d (e.g. d = 1 or 2 ) and direction angle θ (θ = 0°,

45°, 90° and 135°) between the two image pixels. Basically, in one image will

provide four GLCMs depending on the d and θ. Figure 2.3 illustrates an example

of direction (d and θ) for computing GLCMs. O is indicated the corresponding

origion of pixel.

For a detailed explanation, Fig. 2.4 present examples of an gray level

image pixel with the range is between 0 to 4. As mentioned before, four direction

angles are implemented to calculate GLCMs at an image, Figure 2.5 to 2.8 show

examples to calculate the GLCMs. Referring to the Fig 2.5, the size of GLCM is

depended on the range of the grey level at the image. The size of i and j is from

0 to 4. To calculate the GLCM with d = 1 and θ = 0°, firstly, we refer to the

i and j value. In this example the i and j is 4 and 2 respectively. Secondly, we
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Figure 2.4.: Gray level of an image

Figure 2.5.: GLCM for d = 1 and θ = 0°

Figure 2.6.: GLCM for d = 1 and θ = 45°
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Figure 2.7.: GLCM for d = 1 and θ = 90°

Figure 2.8.: GLCM for d = 1 and θ = 135°
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refer to the image and find the partner of two image pixel based on the i and j

value with the distance d = 1 and direction angle θ= 0°. Subsequently, we count

the frequency of i and j value. The result reveals that the intensity of i = 4 and

j = 2 is 3. Following such procedure, a GLCM can be obtained.

A similar process is conducted for d = 1; θ = 45°, d =1; θ = 90° and

d = 1; θ = 135° as shown in Fig. 2.6, 2.7, and 2.8, respectively. To count the

intensity of i and j, the directions are referred to d and θ. Figure 2.6 portrays an

example to count the intensity of i = 1 and j = 2. By referring the d = 1 and θ

= 45°, the intensity of i and j is 2. Moreover, 2.7 and Fig. 2.8 show an example

to count the intensity of i = 0 and j = 1, and i = 0 and j = 1, respectively. By

referring to the d and θ, the respectivelyintensity for i = 0 and j = 1, and i = 0

and j = 1, is 3 and 2.

Generally, GLCM is difficult to implement directly if the computing pro-

cedure involves wide gray scale level. Therefore, Haralick [32] proposed 14 co-

efficient of texture features . The four commonly used Haralick coefficients are

listed below as follow[30, 31];

cont =
Ng−1∑
i=0

Ng−1∑
i=0

Pd,θ (i, j) · (i− j)2 (2.6)

corr =

{∑Ng−1
i=0

∑Ng−1
j=0 Pd,θ (i, j) · (i, j)

}
− µxµy

σxσy
(2.7)

ASM =
Ng−1∑
i=0

Ng−1∑
j=0
{Pd,θ (i, j)}2 (2.8)

hom =
Ng−1∑
i=0

Ng−1∑
j=0

Pd,θ (i, j)
1 + (i− j)2 (2.9)
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In the above equations, cont is the contrast used to measure the image

contrast, corr is the correlation used to measure image linearity, and ASM is

the angular second moment used to measure image smoothness or some called

Energy. hom represents the homogeneity used to indicate homogeneity in uniform

images. In addition, mx, my, svx, and svy are the respectively means and standard

deviations of GLCM are expressed below [30] ;

µx =
Ng−1∑
i=1

i
Ng−1∑
j=1

Pd,θ (i, j) (2.10)

µy =
Ng−1∑
j=1

j
Ng−1∑
i=1

Pd,θ (i, j) (2.11)

σx =
Ng−1∑
i=1

(i− µx)2
Ng−1∑
j=1

Pd,θ (i, j) (2.12)

σy =
Ng−1∑
j=1

(j − µy)2
Ng−1∑
i=1

Pd,θ (i, j) (2.13)

2.5. Feed-Forward Neural Network (FFNN)

2.5.1. Analogy of Human Brain

In recent years FFNN has become a popular method of solution in var-

ious disciplines. These include engineering, business, and defense. FFNN was

created from non-linear computational elements operating in parallel and close

interconnection. The concept of FFNN was inspired from the biological human
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Figure 2.9.: Human nerve cell

brain structure called nerve cell as illustrated in Fig. 2.9 . The FFNN consists

of neurons, which are regarded as similar to a nerve cell. Each neuron is inter-

connected among them to become a structure of neuron’s connections, which is

called the architecture of FFNN. Each of the connections consists of a weight and

bias, which can be adjusted during the training phase. The FFNN stores all the

knowledge in the connections between neurons and extracts them. Such knowl-

edge is able to recall using some elements, which are called input parameters.

By this information, the FFNN is able to recognize new input parameters even

though they never have been presented before [33]. Explainations of architecture

of FFNN is given in next topic.

FFNN is being applied to an increasing number of real-world problems

of considerable complexity. The advantages of FFNN are [34, 35];

1. Learning : FFNN is able to adapt without assistance of the user. It is

learning from the historic process of database (input - output).
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Figure 2.10.: Single input neuron

2. Non-linearity: A neuron is non-linear device. Consequently, FFNN is a

non-linear. It is making no assumptions about input distributions and uses

non-linear neurons functions.

3. Robustness: FFNN are very robust. Their performance degrades gracefully

in the presence of increasing amounts of noise.

4. Generalization: A properly trained model possesses generalization ability

due to which it can be accurately predict outputs for a new input data set

and even multi-output relationships can be simultaneously approximated.

2.5.2. Basic Element of Neural Network

2.5.2.1. Single Input Neuron

Single Input Neuron is a system that receives one input data and gen-

erates only one output data. Figure 2.10 shows that neuron has one input I. I is

multiplied by weight w, to form wI and sent to the summer ∑. Another input

of 1 is multiplied by bias θ and went through to summer. The summer output n

is a net input that goes through to transfer function f, which produces the scale

neuron output O. The neuron output is calculated as (Haqan et.al., 1996):

O = f (wI + θ) (2.14)
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Figure 2.11.: Multi input neuron

2.5.2.2. Multiple Input Neuron

Multiple input neuron is a system which is able to receive more than

one inputs. Figure 2.11 shows the structure of multiple input neurons with the

inputs I1, I2, I3. . . Ii which are able to generate one output. Each input has its

own corresponding weight, which is defined by w1,1, w2,1, w3,1, . . . wi,1 of the

weight matrix W. In this system, bias θ, the summer, adds all the weight inputs

to form the net input n:

n = w1,1I1 + w2,1I2 + w3,1I3 + . . .+ wi,1Ii + θ (2.15)

In matrix form:

n = WI + θ (2.16)

Where W is the weight matrix.

The neuron output can be written as:

O = f (WI + θ) (2.17)
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Figure 2.12.: Single layer

2.5.2.3. Neurons Layer

Neural network architecture is formed when the neurons of a network

are intimately linked with the learning algorithm to train the network [33] .

Commonly, one neuron with many inputs may not be sufficient. Thus, it might

need more than one operation in parallel to provide the sufficient network that

is called layer [36]. Each layer contains a certain number of units or some called

nodes where each unit receives input signals directly from the previous layer and

sends output signals directly to units in the next layer. Generally, there are two

different classes of neural network architectures; single layer neuron and multiple

layers neuron.

• Single Layer

Single layer neuron is the simplest form of a layer network that consists

of input layer of source nodes and output layer of computational nodes . The

input nodes are directed through the output layer without any connection of other

layer. Figure 2.12 shows the single layer neuron where each element of the vector

Ii is an input that is connected to each neuron through the weight matrix Wi,k.

the input signal, weighting and bias θ are summed to generate the net inputs Ok.

This is a simple network compared to multiple layers neuron that have one or

more layers among the input and output signal which is called hidden layers.
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Figure 2.13.: Multi layer

• Multiple Layer

Multiple layers neuron is slightly different from single layer neurons.

It can have one or more hidden layers between the output and input signals.

This architecture has been applied successfully to solve some difficult and diverse

problem such as in modelling, prediction and pattern classification [33]. Basically,

the architecture of FFNN consists of three layers, one input layer, one hidden layer

and one output layer.

Figure 2.13 consists of five layers; one input layer at layer 1, three hidden

layers at layer 2 to 4 and one output layer at layer 5. The input layer receives

the inputs signal Ii and goes through to the hidden layers at layer 2 along with

weight W 1
i,k to obtain the signal a1

k. These signal move forward with weight

W 1,2
k,l to obtain a2

l at layer 3. Same process is employed to obtain signal a3
m at

layer 4. The signal a3
m with weight W 3

m,n move forward to give output signal O.

Typically, this type is popular but is quite complex because of numerous neurons

connection.
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2.5.3. Multiple Layer Perceptron

A Multiple layer perceptron network or some called multiple layer feed-

forward neural network (FFNN) or Multiple Layer Neuron which is one of the

most popular and successful neural network architectures. It is suitable for a

wide range of applications such as prediction, process modelling, recognition and

so on. [37, 38, 39]. Basically, the MLP consists of three layers;

1. an input layer which receives the input signal,

2. a hidden layer which processes the data and sends the signal to the output

layer,

3. an output layer which generates the output signal as a result.

In other words, each unit will receive the input signals (Ii) directly and

send to hidden layers. Then, hidden signals (aj) are moved forward to the output

layers to generate the output signals (Oi). In every layer contains neurons where

each neuron is connected to other neurons via weight connections as illustrated

in Fig. 2.14. Mathematically, the typical FFNN can be interpreted by using the

following equations.

νj =
m∑
i=1

Iiwij + θj (2.18)

aj = θ (νj) = 1
1 + exp (−νj)

(2.19)

Ok = θ (νk) =
n∑
j=1

ajwjk + θk (2.20)
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Figure 2.14.: Architecture of FFNN

E = 1
N

N∑
k=1

(Dk −Ok)2 (2.21)

Therein, E is an error term, Dr stands for a desired value (target), and Ok repre-

sents the output signal (network output), N signifies the number of samples, nj is

the summation of Ii (input signal), wij denotes a weight value between the input

and hidden layer, and jj represents the bias/threshold at j-th. Furthermore,aj

signifies the output of the hidden layer, f(nj) denotes the transfer function (sig-

moid function) associated with node j in the hidden layer, Ok represents the

output of the output layer, f(nk) stands for the transfer function of the output

layer, but in this case, we used a linear function (f(nk) = nk). Other variables

are wjk, which is the weight value between hidden and output layers, jk is the

bias at output layer at k-th. i , j and k respectively denote the input nodes

(i = 1, . . . ,m) in the input layer, (j = 1, . . . , n) are the hidden nodes in the

hidden layer, and (k = 1, . . . , q) is the output node in the output layer.
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Figure 2.15.: Flow of backpropagation

2.5.4. Backpropagation

Backpropagation developed by Rumelhart et al. [40] was created by

generalizing the Widow-Hoff learning rule to multiple layers network and nonlin-

ear differentiable transfer function [41]. The backpropagation learning algorithm

was one of the earliest and the most common method for training FFNN. It was

used to train multiple layers network to solve difficult and diverse problems. This

algorithm is a learning scheme where the error is back propagated layer by layer

and used to update the weight.

Figure 2.15 illustrates the backpropagation algorithm process. The im-

plementation of this algorithm involves two steps;

1. Database is required for backpropagation training purpose. Then, identify

the number of input and output neuron to set up the FFNN architecture.
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Using the initialized weight and bias, the input parameters are transmitted

from the input layer through the hidden layers to the output layer. The

values (Ok) obtained from the output layer are compared with the desired

output (Dr). Therefore, the prediction errors will be available.

2. This stage involves propagating these prediction errors backward from out-

put layer through the hidden layers to the input layer. The amount of

weights and biases are compared during this process and the initialized

bias and weight are updated. These processes are repeated until the weight

and biases converge and the prediction output approximates the desired

output.

2.5.4.1. Levenberg-Marquardt Learning Algorithms

Levernberg-Marquardt algorithm was proposed by Levenberg [42] and

Marquardt [43]. This algorithm is combined the excellent local convergent prop-

erties of the Gauss-Newton near a minimum with the consistent error decrease

provided by gradient descent far from a solution [33]. It was designed to ap-

proach a second order training speed without computing the Hessian matrix.

The Levenberg-Marquardt can be approximated as

wi+1 = wi −
[
JT (w) J (w) + ηI

]−1
JT (w) e (w) (2.22)

where e (w) is a function containing the individual error terms, J (w) presents

the Jacobian matrix, I denotes the identify unit matrix, and η stands a scalar

that controls the size of the trust region. When η = 0 the method become

equivalent to the Gauss-Newton method whereas for every large η the Levenberg-

Marquardt tends to gradient descent with very small step size [35]. In this way,

the performance of the sum of square (Ref: Eq. 2.21) can be reduced.
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In FFNN, there are many kinds of training algorithms such as gradi-

ent descent, gradient descent with momentum, resilient back-propagation with

flectcher-reever update and so on. However, a study by R. Sing et al. [44] and A.

Saengrung et al. [45] found that the Levenberg-Marquardt is faster process than

other algorithms with good accuracy predictions.

2.6. Dimension Vision Predictor (DVP)

2.6.1. Stereo Vision Analogy

There are several techniques used to measure dimensions with a camera

[46, 47]. Unfortunately, some techniques demand special equipment and camera

lens calibration. Therefore, aiming for practical use, this study chooses survey-

from-photo [48] because it can be implemented directly from any ordinary camera

without calibrating the camera lens.

Generally, survey-from-photo identifies the dimension based on two im-

ages. The images are marked with two corresponding points. Then both are

connected to make a line at an object to measure. To achieve an accurate mea-

surement, a reference dimension is necessary. The reference dimension is a di-

mension obtained from an object that is known exactly. Here, survey-from-photo

uses that object dimension as a reference to standardize the scale range to the

images.

The basic concept of survey-from-photo is is derived from the "stereo

vision" principle, which uses two cameras to measure dimensions of an object,

as presented in Fig. 2.16. One camera is located at Cr and another at Cl with

intervening distance (d). The cameras are focused at point P1(x1, y1, z1) and

P2(x2, y2, z2) with certain focus length (f), which is are all obtainable at the
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camera lens. At f , two image points are apparent at the image P1r, P1l, P2r, P2l

with respective coordinates (x1r, y1r), (x1l, y1l), (x2r, y2r), and (x2l, y2l). The co-

ordinate (x1r, y1r), (x1l, y1l), (x2r, y2r), and (x2l, y2l) are calculable by considering

the center of image as the origin. To obtain the coordinate of P1(x1, y1, z1) and

P2(x2, y2, z2), the equation is definable simply as shown below.

P1 (x1, y1, z1)


x1

y1

z1

 = d

x1l − x1r


x1l

y1l

f

 (2.23)

P2 (x2, y2, z2)


x2

y2

z2

 = d

x2l − x2r


x2l

y2l

f

 (2.24)

Lx = d
(

x1l

x1l − x1r
− x2l

x2l − x2r

)
(2.25)

Ly = d
(

y1l

x1l − x1r
− y2l

x2l − x2r

)
(2.26)

Lz = df
( 1
x2l − x2r

− 1
x2l − x2r

)
(2.27)

In those equations,

x1l = f

tan θP1l

(2.28)

29



Figure 2.16.: Principle of stereo vision

x2l = f

tan θP2l

(2.29)

x1r = f

tan θP1r

(2.30)

x2r = f

tan θP2r

(2.31)

The distance (L) between P1 and P2 can be expressed as;

L =
√

(Lx)2 + (Ly)2 + (Lz)2 (2.32)

Using the reference scale (L), DVP is identifiable by coordinates at P1r, P1l, P2r,

and P2l by clicking the mouse.
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2.7. Finite Element Analysis (FEA)

The FEA numerical technique, well known in acoustical fields, has been

used in many fields to obtain the sound field of rooms with high accuracy [49, 50].

The benefits of using FEM are: to provide a simulation form, have the ability

to analyze non-homogeneous material and can preserve a very dynamic, linear or

nonlinear data [51]. The important thing is FEM is reliable in low frequency (125

kHz to 1 kHz) rather than ray tracing (2 kHz to 16 kHz) but it will be confirmed

in the next stage. For this study, the FEA technique is time domain analysis.

The FEA procedure is based on the principle of the minimum of to-

tal potential energy applied to a three-dimensional sound field. The discretized

equation for a sound field in the frequency domain is expressed as

(
K + iωC− ω2M

)
p = iωρν0W (2.33)

where M, C, and K respectively signify the acoustic mass, dissipation, and stiff-

ness matrices. Furthermore, i, p, ρ, w, v0, and W respectively denote the imag-

inary unit (i2 = −1) sound pressure vector, the air density, angular frequency,

velocity of sound vibration and distribution vector. By assuming that � and ��

are first-order and second-order derivatives in time, the semi discrete equation in

time domain can be evaluated using Eq. 2.34 shown below.

Mp̈+Cṗ + Kp = ρν̇0W (2.34)

To calculate the equation 2.34, the Newmark β [52] scheme is used to

solve step by step as shown below;
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p′ = p′n +4tṗ′

n + 4t
2

2
[
(1− 2βH) p̈′n + 2βHp̈′n+1

]
(2.35)

ṗ′n+1 = ṗ′n +4t
[
(1− γH) p̈′n + γHp̈′n+1

]
(2.36)

where n and Dt is respectively denotes the time step counter, the time step value.

bH and gH are integration parameters. While p′ is the vector of unknowns at the

finite element node, ṗ′ and p̈′ are first and second derivative with respect to time.

Further explanation, time domain analysis on this study is described elsewhere

by following this paper [8].

2.8. Summary

The techniques discussed above are used for identifying the material

surfaces and room dimensions. Such techniques are also used for simulating

sound fields of rooms, and the uses of these techniques will be discussed in the

next chapter.
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Chapter 3.

Development of System 1 to Identify Material

Surfaces

3.1. Introduction

This chapter discusses the development of System 1. To identify the

material surface, six types of material surfaces are captured by using an ordinary

camera. Using GLCM, all the images are computed in order to obtain Haralick’s

Coefficients. Then, those coefficients are used as input parameters for FFNN to

identify the material surfaces and at the same time absorption coefficients are

provided.

There are three stages to develop this system;

1. Material Surfaces capturing,

2. GLCM and Haralick’s Coefficient Implementation, and

3. FFNN Implementation.
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Table 3.1.: Propotion of the surface images

Surface Type of surface image No. of image
(a) wall 69
(b) door 71
(c) floor 66
(d) window 56
(e) ceiling 67
(f) carpet 40

These stages are discussed in subsections below. The reliability of ma-

terial surfaces estimations are presented at results subsection.

3.2. Methodology of System 1

3.2.1. Material Surface Capturing

For this study, six material surfaces were taken of Oita University rooms,

as portrayed in Fig. 3.1. Surfaces (a), (b), (c), (d), (e), and (f) are, respectively,

surfaces for walls, doors, floors, windows, ceilings, and carpets.

In order to perform material surfaces capturing, an ordinary camera is

useful. Regarding standardization of images, a digital single-lens reflex (DSLR)

camera with Sigma 50 mm f2.8 lens was used as illustrated in Fig. 3.2. In

addition, the distance from the camera to the surface material was set to 40 mm

with autofocus mode, whereas the respective lens settings for aperture, shutter

speed and ISO speed were f2.8, 1/80, and 100. To analyze the accuracy of System

1, 368 images of surfaces were captured at different locations in three rooms. The

proportions of images of material surfaces are shown in Table 3.1. Then, all

images were analyzed using GLCM.
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(a) wall (b) door

(c) floor (d) window

(e) ceiling (f) carpet

Figure 3.1.: Sample of surface images
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Figure 3.2.: Sigma 50 mm:f 2.8 lens

3.2.2. Gray Level Co-Occurrence Matrix and Haralick Coefficients

Implementation

The GLCM was computed for the 368 images of material surfaces using

the following settings: i. d =1, θ = 0°; ii. d = 1, θ = 45°; iii. d = 1, θ = 90°;

and iv. d = 1, θ = 135°. The GLCM computations started when all the surface

images were transformed into gray scale image as presented in Fig. 3.3.

Regarding to the following setting as mentioned above, each surface im-

ages were provided four types of GLCM. In subchapter 2.4 explained that GLCM

is hard to use directly, therefore we used Haralick’s coefficient to transform the

GLCM into statistcal approach [26]. Each Haralick’s coefficient provides four

values based on setting, but only an average value of four values were considered

hereinafter. Table 3.2 (a) shows example of four values for each Haralick coeffient

at each surface image and Table 3.2 (b) is the average value from four values.

The average value is designated as the coefficient value for this study.
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(a) (b)

Figure 3.3.: Transformation from colour image to gray image (a) colour surface
image (b) gray surface image

(a)

θ cont corr ASM hom
0° 0.1680 0.6495 0.3809 0.9160
45° 0.2413 0.4975 0.3370 0.8794
90° 0.2421 0.4949 0.3374 0.8789
135° 0.2598 0.4590 0.3278 0.8701

(b)

cont corr ASM hom
0.2278 0.5252 0.4557 0.8861

Table 3.2.: Example of Haralick coefficient value of a surface image (a) Four values
depending onto θ for each Haralick’ coefficient (b) average value from
four values
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Because of variations of brightness and texture features in our experiment, the

ranges of the coefficient values become too wide to be processed. To overcome this

problem, a limitation for each coefficient value was made using the means (x̄) and

standard deviation (sv). The limitations are (x̄− sv) and (x̄+ sv), respectively, for

low limitation and high limitation. The coefficient values beyond the limitations

were removed from further investigation.

3.2.2.1. Programming of Gray Level Co-Occurrence Matrix and Haralick

Coefficients

To obtain the entire of Haralick coefficient for each image surface, the

author used MATLAB Release 2010 [53] with image processing toolbox [54] to

developed a programming. The programming can be referred at Appendix I. This

programming consists of four paragraphs;

• Paragraph 1

This paragraph is used to load the images of material surfaces. If the

images are 10, thus we have to load all the images into the MATLAB workspace.

• Paragraph 2

Third paragraph is used to convert the image into greyscale.

• Paragraph 3

Four paragraph is used to develop the GLCM for the images. The coding

“offset = [0 1;-1 1;-1 0;-1 -1];” are proposed by MATLAB which indicated the

direction d and θ; d =1, θ = 0°; ii. d = 1, θ = 45°; iii. d = 1, θ = 90° and iv. d

= 1, θ = 135°. The Figure 3.4 illustrates the relationships of directions that are

defined by the offsets, where 1 is the distance from pixel of origin. Then, using
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graycomatrix the matrix of GLCM for each image is developed.

• Paragraph 5

Finally, from GLCM the Haraliks’ coefficients are obtained by using

graycoprops which provided four coefficients; Contrast, Correlation, Energy or

ASM, and Homogeneity

3.2.3. Results of Gray Level Cooccurrence Matrix

As mentioned in subsection 3.2.2, all the surface images (368) were fed

into GLCM and analysis using Haralick coefficient. In Fig. 3.5 illustrated the

range of four coefficient values for six surface. It shows that the range for each

coefficient in each surface image is too wide to process some of them almost similar

(e.g. wall ≈ window ≈ ceiling; door ≈ floor). Thus, the author used limitation

to distingush the range to make easy FFNN recognizes the surface images during

the during process.

Figure 3.6 portrays the range of four coefficient values for the six surface

images after limitation. Each coefficient value showed a limitation. The limita-

tion shows two bars at the top and below represented as a high limitation (HL)

and low limitation (LL). Intermediate of the high and low limitation is a medium

limitation (ML). Observation reveals that all surface images gave different coef-

ficient values, except surfaces (b) and (c). Both showed approximately similar

coefficient values for all coefficients. To overcome the redundancy of coefficient

values during FFNN learning, both were combined to the same surface image.

Results of analyses indicate that only 53.8% of 360 images of surfaces

(surface wall = 39 surface images, surface door = 50 surface images, surface floor

= 27 surface images, surface window = 26 surface images, surface ceiling = 30
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(a) wall (b) door

(c) floor (d) window

(e) ceiling (f) carpet

Figure 3.5.: Range of coefficient values for six surface images
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(a) wall (b) door

(c) floor (d) window

(e) ceiling (f) carpet

Figure 3.6.: Limitation of coefficient values for six surface images
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surface images, and surface carpet = 20 surface images) were used for FFNN

because of limitations.

3.2.4. Feed Forward Neural Network Implementation

3.2.4.1. Identification of training database

To develop FFNN, input and output parameters are four coefficients

values (cont, corr, ASM, and hom) and material surfaces respectively. In this

study, the absorption coefficients (a) of six material surfaces are referred from

reports of the relevant literature [55, 56] as shown in Table 3.3. Therefore, by

identifying the material surfaces, we are able to ascertain the absorption coef-

ficients of surfaces simultaneously. To identify the material surfaces, we used a

classification number (1–5) to represent the output parameter. Table 3.4 - 3.9

show the range descriptions of input parameters and output parameters for each

material surfaces. As mention earlier, material surface of door (Ref: Table 3.5)

and floor (Ref: Table 3.6 ) were combined because both indicated approximately

similar in all coefficient values. Thus, the outputs for both were 2. The combi-

nation was necessary because FFNN unable estimated correctly if the coefficient

values for two surface materials were similar. The total surface images used are

194 after limitation for developing the FFNN.

Table 3.3.: Absorption coefficient for each material surface

Type of surfaces absorption coefficient
wall 0.07
door 0.02
floor 0.02

window 0.04
ceiling 0.4
carpet 0.06
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Table 3.4.: Range description of coefficient values for wall

type of surfaces input parameter output parameter
coefficient min max classification no.

wall

cont 0.1292 0.2234

1corr 0.2747 0.4194
ASM 0.4897 0.6948
hom 0.8888 0.9354

Table 3.5.: Range description of coefficient values for door

type of surfaces input parameter output parameter
coefficient min max classification no.

door

cont 0.0003 0.01795

2corr 0.7674 0.9691
ASM 0.6994 0.9983
hom 0.9910 0.9998

Table 3.6.: Range description of coefficient values for floor

type of surfaces input parameter output parameter
coefficient min max classification no.

floor

cont 0.0163 0.0425

2corr 0.6627 0.9058
ASM 0.7398 0.9048
hom 0.9788 0.9918

Table 3.7.: Range description of coefficient values for window

type of surfaces input parameter output parameter
coefficient min max classification no.

window

cont 0.0578 0.1613

3corr 0.4889 0.6546
ASM 0.5376 0.8166
hom 0.9194 0.9611

Table 3.8.: Range description of coefficient values for ceiling

type of surfaces input parameter output parameter
coefficient min max classification no.

ceiling

cont 0.0411 0.0763

4corr 0.3502 0.7865
ASM 0.6328 0.8997
hom 0.9623 0.9799
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Figure 3.7.: Architecture of FFNN for System 1

Table 3.9.: Range description of coefficient values for carpet

type of surfaces input parameter output parameter
coefficient min max classification no.

carpet

cont 0.3810 0.4524

5corr 0.3942 0.5427
ASM 0.1996 0.2625
hom 0.7925 0.8188

3.2.4.2. Training Phase

Coefficient values in the limitation were fed into FFNN. Four coefficients

(cont, corr, ASM, and hom) and the material surfaces were used respectively as

input neurons and output neurons. The numbers of hidden neuron were set up

from 2 to 15 . The architecture of FFNN in this stage is shown in Fig. 3.7.

Before implementing the FFNN, database contains of coefficient values

and types of material surface are transformed from 0.1 to 0.9 using Eq. 3.1 to

standardize the range.
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xt = 0.1 +
[
0.8×

(
xo − xmin
xmax − xmin

)]
(3.1)

where, xo is the original database, xt is the transform database, xmin and xmax is

the minimum and maximum of the original database, respectively.

The database was seperated into three subsets a training subset, a val-

idation subset, and a testing subset. The proportion of each subset is 60% of

database for training subset, 20% of database for validate subset and 20% of

database for testing subset.

In addition, the learning algorithm in this study was Levenberg–Marquardt

(trainlm) because it is faster and more efficient [36, 57, 45, 44]. To obtain the

optimum network, trial and error scheme was conducted by combining all those

neurons (e.g. [i; h; o] for [number of input nueron; number of hidden neuron;

number of output neuron]; example combination [4; 6; 1], [4; 10; 1], . . . or [4;

9; 1]) with the number of hidden neuron used were from 2 to 15, but only one

combination that provided good performance was selected.

The optimum network can be obtained when learning process in done.

Neverthless during the process, ’over training’ or ’under training’ may occur and

this will affect to the idenfication accuracy. The best way to avoid this problem

is to use ’earling stopping’ [58, 59, 33]. Three subsets of database as mention

above were used to apply the early stopping process . The function of those

subsets; training subset is used to train the FFNN, validation subset is used to

validate the learning process, and the testing subset is used to investigate the

prediction performance. There are no specific proportions of subsets were set.

At this point, the proportions of subsets were chosen arbitrarily as apply above.

Generally, the training subset should be larger than the validation susbset and

testing subset (e.g. 60% training, 20% validation, 20% testing [41]; 50% training,
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25% validation, 25% testing [60]; 60% training, 15% validation, 25% testing [61];

72% training, 13% validation, 15% testing [62]). For the assessment, the mean

square error (MSE) and correlation coefficients (R) are used. The network that

gives minimum MSE and high correlation R is selected as the optimum network.

The equations of MSE and R are stated as follows;

MSE =
N∑
i=1

(ei)2 =
N∑
i=1

(ti − ai)2 (3.2)

where ei is error, ti is desired value, ai is actual value and N is number of data.

R =
∑N
i=1 (xi − x̄) (yi − ȳ)√∑N

i=1 (xi − x̄)2
√∑N

i=1 (yi − ȳ)2
(3.3)

where xi is the actual values, yi is predicted values, x̄ and ȳ are the mean values.

3.2.4.3. Programming of FFNN

To develop the FFNN, in this study used MATLAB Release 2010 [53]

with Neural Network toolbox [41] as a tool to create the FFNN programming.

The programming for FFNN can be referred at Appendix II. This programming

consists of four paragraph of steps;

• Paragraph 1

In this paragraph, database is loaded into the workspace using load

trainnorm2.txt (able uses any kind of file name). The database is seperated by

input parameters which are P1, P2, P3 and P4 for coefficient values of contrast,

correlation, ASM and homogeinity, respectively. While output paramter T1 is

type of material surface.

47



• Paragraph 2

In this level, database is normalized by scaling it to between 0.1 and 0.9

for data simplification. Then, we organize the input parameters (P1, P2, P3 and

P4 ) into P and output parameter (T1 ) to T. Afterthat, the database is separated

into 3 subsets, that are training subset (60% of database (e.g. 168 database)),

validation subset (20% of database) and testing subset (20% of database). These

subsets are defined as trP1, v.P and t.P, respectively, for input training subset,

input validation subset and input testing subset. The trT1, v.T and t.T are

defined as output training subset, output validation subset and output testing

subset.

• Paragraph 3

In this stage, number of hidden neuron is denoted by s1. Value of s1

depends on the user input. As mentioned, in this study used 2 - 15 hidden neurons

The first step is to create a FFNN architecture. The coding is shown below:

net=newff(minmax(trP1),[S1 1],{’tansig’,’purelin’},’trainlm’)

The word newff means the network is created using feed-forward type

and 1 indicates that the network considers only one output. Function minmax is

used to determine the range of the inputs. The ‘tansig’,’pureline’ and trainlm are

the type of transfer function and training algorithm. The network will initialise

the weight and bias before being trained. The network is initialised by:

net=init(net);

tic,[net,tr]=train(net,trP1,trT1,[],[],v,t);toc;

Therefore, the network is ready to be trained. During the training, the

weight and bias of the network are iteratively adjusted to find optimum network.
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The early stopping method used in this stage functions to avoid over learning or

under learning which will affect the network performance.

• Paragraph 4

In this stage, the neural network has been created and ready to be used

for predictions. The prediction value is simulated after finishing the training

phase. The predicted values are compared with the output data for error identi-

fication. The MSE in training (per_train), validation (per_validate) and testing

(per_testing) subset can be determined based on the error from each subset. The

R can be plotted to show the prediction value compared with the actual value.

3.2.5. Results of Feed Forward Neural Network

As mention before, to obtain the optimum network, trial and error was

applied in this study. We used 2 to 15 number hidden neurons. Each number

of hidden neuron was trained to obtain the MSE. Subsequently, MSE for each

hidden neuron was compared to identify the minimum MSE. The number of

hidden neuron indicates a minimum MSE was selected as optimum network. In

this case, we choose the minimum MSE at validation subset because validation

error brings information the performance of FFNN.

Table 3.10 shows the MSE of each subset in each hidden neuron. In the

validation subset, it seems that the number of hidden neuron of 6 gives minimum

MSE of 0.0017 compared than others. Although, MSE at training subset gives

0.0018, which is not a minimum MSE, but it can be accepted because the range

between 0.0018 and minimum MSE of 0.0017 is approximate closer.

From the analysis, the optimum network [4,6,1] represents number of

input neuron, hidden neurons and output neuron respectively with MSE ≤ 0.0018

and correlation coefficient R ≥ 0.9 (Figure 3.8 and 3.9) was obtained for both
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Table 3.10.: MSE of each number of hidden neuron

number of hidden neuron MSE
training subset validation subsets

2 0.0180 0.0101
3 0.0059 0.0060
4 0.0034 0.0046
5 0.0030 0.0040
6 0.0018 0.0017
7 0.0017 0.0032
8 0.0034 0.0021
9 0.0017 0.0019
10 0.0032 0.0020
11 0.0017 0.0022
12 0.0018 0.0022
13 0.0020 0.0018
14 0.0030 0.0023
15 0.0018 0.0034

training and validation subsets.

To confirm their performance, we used 39 surface image of the testing

subset. By using this optimum network, it shows the MSE = 0.0075 with the

correlation coefficient R ≥ 0.9 as shown in Figure 3.10. The result from testing

subset, it can be assumed that System 1 performance is inferred to be good at

this stage.

3.3. Summary

At this stage, the System 1 was well developed. The optimum network

is obtained from the number of hidden neuron of 6. The MSE for training subset

and validation subset for both is MSE ≤ 0.0018 and correlation coefficient R ≥

0.9. By using the testing subset, the optimum network obtained good estimation

performance with MSE = 0.0075 with the correlation coefficient R ≥ 0.9. As

mention earlier, the output of the network was the classification number from 1

to 5. Each number represents the type of material surfaces. By these numbers, we
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Figure 3.8.: Comparison System 1 classification between train classification

Figure 3.9.: Comparison System 1 classification between validate classification
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Figure 3.10.: Comparison System 1 classification between test classification

able indicate the material surfaces, and the absorption coefficients are recognized

simultaneously by referring the Table 3.3.
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Chapter 4.

Development of System 2 to Identify Dimensions

4.1. Introduction

This chapter discusses the development of System 2. To identify dimen-

sions, two images at one view with contains of objects that want to measure are

captured using the same camera at System 1. Then, DVP computes the objects

in the images in order to measure the dimensions. In this work, there are two

stages to develop this system;

1. Image Capturing, and

2. DVP Implemenation

These stages are discussed in subsections below. To investigate the

repeatability, 100 dimensions at several objects are used. This part is explained

at results subsection.
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(a)

(b)

Figure 4.1.: Example of two images at one view (a) left image (b) right image

4.2. Methodology of System 2

4.2.1. Image Capturing

The same camera for System 1 was used with focus lenses of 18–70 mm

to capture two images at one view. The camera was set in auto focus mode.

Figure 4.1 shows an example of two images that captured by the camera at one

view. Two images are left image and right image which is indicated the position

of the camera captured. That view at the images supposedly displays the objects

to be measured. Then, the images are feed into DVP to measure the target

objects.
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(a)

(b)

Figure 4.2.: Identification dimension using ruler methods in two image; (a) Left
image (b) Right image
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4.2.2. Dimension Vision Predictor Implementation

Figure 6 presents an example of identifying dimensions of objects in two

images at one view. Lines connect corresponding points at objects. For example,

to measure blackboard object dimensions, four corresponding points of A, B, C,

and D must be obtained. Each corresponding point is connected to form lines:

line 9, 10, 11, and 12. As described above, the survey-from-photo requires a

standard scale. Therefore, the authors propose to use a ruler that is attached

at an appropriate view as reference dimension in this "ruler method". A ruler is

preferred because it is practical and simple to attach to the view region to be

measured.

To investigate the repeatability of dimension prediction, 100 dimensions

at several objects were examined. The predicted dimensions using DVP as System

2 were compared with measured dimensions obtained from laser measurements

using a laser indicator (LS-501A; MAX Co., Ltd.) illustrated in Figure 4.3. The

MSE and correlation coefficient (R) are applied for assessments.

4.2.3. Results of System 2

From analyses of System 2, the results are given in Figure 4.4, which

revealed a high correlation coefficient (R ≥ 0.99) between identifcation values

using System 2 and measured values with MSE ≤ 0.009. Results show that

System 2 provided high reliability using no physical measurement. For detail,

the comparisons in each dimension can be referred at Appendix III.
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Figure 4.3.: Laser measurement equipment (LS-501A; MAX Co., Ltd.)

Figure 4.4.: System 2 dimensions and measured dimensions
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4.3. Summary

The System 2 was performed well by using two images. This two images

are used to calculate by DVP in order to measure the corresponding obejcts.

A high correlations R ≥ 0.99 with MSE ≤ 0.009 is presented from System 2

which means that System 2 is able to provide high reliability in identifying object

dimensions without using no physical measurement.
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Chapter 5.

Development of Feed-Forward Neural Network to

Estimate Reverberation Times

5.1. Introduction

The focus of this chapter is on the development of FFNN for estimating

the reverberation times of a room. To investigate the reliability of FFNN estimat-

ing reverberation times, three conditions in an actual room were created. Three

conditions are original condition, absorption coefficient modification on a door by

attaching a tiled carpet, and absorption coefficient modification on a window by

attaching a tiled carpet. Reverberation times from these three conditions using

FFNN, FEA, and measured (ISO 3382) were compared.
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Figure 5.1.: Room mesh

Table 5.1.: FEA’s Setting

No. of overall wall door floor window ceiling furniture
element 60499 459 3477 3078 504 2986 5752
node 515717 520 3786 3190 570 3228 594

5.2. Methodology of Estimation Reverberation Times Using

Feed Forward Neural Network

5.2.1. Source of Data

A room at Oita University was used as the model where room volume

was 130.21 m3 (7.08 m, 6.09 m, 3.02 m). Here, floor, ceiling, wall, window,

door and furniture surfaces were considered as the factors to be utilized. Figure

5.1 shows the mesh of the classroom included the furniture. The mesh can be

obtained by using the rule; λ/d > 4.8 (λ is acoustic wavelength, d is nodal

distance) [63]. Then, Gid9 [64] computes the mesh to obtain the numbers of

elements and nodes which were used in the FEA analysis as shown in Table

5.1.
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Figure 5.2.: Room layout

In the FEA, the room surfaces of absorption coefficients were employed to

simulate the reverberation times. The range of the absorption coefficients of the

surfaces used are floor: 0.01 - 0.2, ceiling: 0.05 - 0.88, wall: 0.02 - 0.06, window:

0.03 - 0.55, and door: 0 - 0.3. Figure 5.2 shows that the range for locations is; x

axis: 0.74 - 6.08 and y axis: 0.79 - 5.29. The following equation 5.1 is expected

to generate the reverberation times from the sample combination absoeptionc

coefficients and receiving point locations. More than 700 sample were created.

RT = fFEA [αwall, αdoor, αfloor, αwindow, αceiling, αfurniture, rpx, rpy] (5.1)

where fFEA is a function of FEA. The αwall, αdoor, αfloor, αwindow, αceiling, αfurniture,

rpx and rpy is represented absorption coefficient of wall, door, floor, window, ceil-

ing, and furniture respectively. The rpx and rpy is the location of receiving point
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at x axis and y axis.

5.2.2. Development of Feed Forward Neural Network

Eight parameters are to be taken as a set of input parameter; αwall,

αdoor, αfloor, αwindow, αceiling, αfurniture, rpx and rpy. The combination of FFNN

can be simplified as follows;

RT = fFFNN [αwall, αdoor, αfloor, αwindow, αceiling, αfurniture, rpx, rpy] (5.2)

where fFFNN is a function of FFNN.

Usually, before executing the training process, set of database are needed

to normalize the parameters between 0.1- 0.9. The normalization can be expressed

by using the equation 3.1.

More than 700 samples obtained from FEA were employed. They were

divided into three subsets; train (60% of samples), validate (20% of samples)

and test (20% of samples). The train subset is mostly used for computing and

updating the weights and bias, the validate subset uses to monitor the training

process and test subset were used to verify the performance. In addition, 35

unseen data were implemented to confirm the credibility of FFNN performance.

In this case, the unseen data were an independent database which was not used

for training process.

Three layers were used to build a network as shown in Figure 5.3. The in-

put layer, which consisted of eight input neurons represents the input parameters,

whereas, the ouput layer conssisted of one output neuron represents reverberation
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Figure 5.3.: Archiecture of FFNN for estimating reverberation times

times. Then the number of neurons in the hidden layer can be added from 2 to

15 neurons to get the optimum network architecture. Thus, a trial and error is

a normal method used to identify the optimum hidden neuron which gives influ-

ence to the performance. Only one network may offer a good result. In this case

the mean square error (MSE) and correlation coefficients (R) were used for the

assessment.

5.2.3. Results of Feed Forward Neural Network

By referring to Table 5.2 we can observe the MSE of each subset in each

hidden neuron. The optimum network of FFNN obtained from 10 hidden neurons

(network architecture: [8, 10, 1]). This optimum network also performance well

especially at test subset with MSE = 0.0008 with correlation coefficient R ≥ 0.90

which means the predicted values are close to actual values.

The unseen data were used to verify their performance. The example of
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Table 5.2.: MSE of each number of hidden neuron

number of hidden neuron MSE
training subset validation subsets

2 0.0020 0.00270
3 0.00059 0.00087
4 0.00058 0.00084
5 0.00095 0.0010
6 0.00048 0.00099
7 0.00055 0.00087
8 0.00069 0.00098
9 0.00047 0.00086
10 0.00035 0.00084
11 0.00041 0.00084
12 0.00040 0.00090
13 0.00039 0.00085
14 0.00043 0.00088
15 0.00047 0.00092

unseen data are showed in Table 5.3. By using a combination of input parameters

of unseen data, the FFNN was able to predict the reverberation times. Figure

5.4 illustrates the comparison of FFNN prediction between unseen data of re-

verberation times. The FFNN are predicted close to reverberation times unseen

data with the MSE = 0.0004 with correlation coefficient R≥ 0.90. Such results

indicated that the FFNN yielded a good agreement in respect to unseen database

of reverberation times.

5.3. Reliability of Feed Forward Neural Network

To investigate the reliability of the FFNN, three conditions at a actual

room are created. These conditions can be simplified as follows;

• Condition A: The original condition of the room

• Condition B: Tiled carpet was attached to a door in the original room

• Condition C: Tiled carpet was a attached to a window in the original room
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Table 5.3.: Unseen data

No. of
αwall αdoor αfloor αwindow αceiling αfurniture rpx rpy

RTF EM

unseen data unseen data
1 0.02 0.06 0.20 0.18 0.70 0.30 0.74 0.79 0.53
2 0.02 0.06 0.20 0.18 0.70 0.30 0.74 3.04 0.52
3 0.02 0.06 0.20 0.18 0.70 0.30 0.74 5.29 0.52
4 0.02 0.06 0.20 0.18 0.70 0.30 3.44 5.29 0.490
5 0.02 0.06 0.20 0.18 0.70 0.30 3.44 3.04 0.498
9 0.02 0.06 0.20 0.18 0.70 0.30 3.44 0.79 0.500
7 0.02 0.06 0.20 0.18 0.70 0.30 6.08 5.29 0.478
8 0.02 0.00 0.20 0.18 0.70 0.30 0.74 0.79 0.548
9 0.02 0.00 0.20 0.18 0.70 0.30 0.74 3.04 0.535
10 0.02 0.00 0.20 0.18 0.70 0.30 0.74 5.29 0.537
11 0.02 0.00 0.20 0.18 0.70 0.30 3.44 5.29 0.504
12 0.02 0.00 0.20 0.18 0.70 0.30 3.44 3.04 0.511
13 0.02 0.00 0.20 0.18 0.70 0.30 3.44 0.79 0.514
14 0.02 0.00 0.20 0.18 0.70 0.30 6.08 5.29 0.499
15 0.02 0.18 0.20 0.55 0.70 0.30 0.74 0.79 0.404
16 0.02 0.18 0.20 0.55 0.70 0.30 0.74 3.04 0.389
17 0.02 0.18 0.20 0.55 0.70 0.30 0.74 5.29 0.379
18 0.02 0.18 0.20 0.55 0.70 0.30 3.44 5.29 0.356
19 0.02 0.18 0.20 0.55 0.70 0.30 3.44 3.04 0.352
20 0.02 0.18 0.20 0.55 0.70 0.30 3.44 0.79 0.375
21 0.02 0.18 0.20 0.55 0.70 0.30 6.08 5.29 0.348
22 0.02 0.18 0.20 0.55 0.70 0.30 0.74 0.79 0.403
23 0.02 0.18 0.20 0.55 0.88 0.30 0.74 3.04 0.402
24 0.02 0.18 0.20 0.55 0.88 0.30 0.74 5.29 0.381
25 0.02 0.18 0.20 0.55 0.88 0.30 3.44 5.29 0.395
26 0.02 0.18 0.20 0.55 0.88 0.30 3.44 3.04 0.377
27 0.02 0.18 0.20 0.55 0.88 0.30 3.44 0.79 0.423
28 0.02 0.18 0.20 0.13 0.88 0.30 6.08 5.29 0.347
29 0.02 0.06 0.11 0.13 0.42 0.02 0.74 0.79 0.903
30 0.02 0.06 0.11 0.13 0.42 0.02 0.74 3.04 0.873
31 0.02 0.06 0.11 0.13 0.42 0.02 0.74 5.29 0.797
32 0.02 0.06 0.11 0.13 0.42 0.02 3.44 5.29 0.873
33 0.02 0.06 0.11 0.13 0.42 0.02 3.44 3.04 0.807
34 0.02 0.06 0.11 0.13 0.42 0.02 3.44 0.79 0.863
35 0.02 0.06 0.11 0.13 0.42 0.02 6.08 5.29 0.833
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Figure 5.4.: Unseen Data Prediction

Table 5.4.: Condition setting at a room

Condition αwall αdoor αfloor αwindow αceiling αfuniture
A 0.03 0.13 0.02 0.07 0.39 0.12
B 0.03 0.06* 0.02 0.07 0.39 0.12
C 0.06** 0.13 0.02 0.07 0.39 0.12

* tiled carpet attached on door
** tiled carpet attached on window

The absorption coefficients of material surfaces are listed in Table 5.4.

Figure 5.5 illustrates the plan view of furniture layout, location of receiving points

and location of sound source in a room.

The parameters given in Table 5.4 were fed into FFNN to estimate the

reverberation times at each receiving points. Subsequently, a series of measure-

ment is conducted in three conditions of a room to obtain the reverberation times

following ISO 3382-2:2008 [18]. Figure 5.6 (a), (b) and (c) show the measurement

conditions in a room. In addition, simulated results of FEA were also provided

to compare them with results by FFNN and measurements.
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Figure 5.5.: Location of receiving points

Figure 5.7 presents the comparisons of reverberation times at each receiv-

ing points between estimated results by FFNN, simulated results by FEA and

measured results. Here, the MSE between measured results and FFNN was more

than 0.002, while MSE between measured results and FEA was more than 0.005.

This indicated the that predicted FFNN approximates to measured data rather

that FEA. The reason for this is that the consistence of FFNN prediction located

closer to measured data, whereas the FEA was unstable especially at Condition

B and C in RP2 and RP3.

In general, the FEA computing time is around few hours. Therefore, this

study develops a FFNN model as a option for estimating the reverberation times

with 1 s. The FFNN is user friendly and can be used at preliminary stages either

for constructing or for renovating rooms with acceptable reverberation times.
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(a) Condition A

(b) Condition B

(c) Condition C

Figure 5.6.: Three type of conditions of a room
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Figure 5.7.: Comparison of FFNN, FEA and measurement

5.4. Summary

A technique for estimating on reverberation times using FFNN in a room

is presented. In this work, the capability on FFNN estimated in variety of absorp-

tion coefficients show a good agreement with measured values. By using three

conditions (condition A, B and C), the comparison between FFNN and measured

results produced acceptable results with the MSE ≥ 0.002. The estimations are

obtained within 1 s.
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Chapter 6.

Implementation of System 1 and System 2 in

Actual Rooms to Simulate Reverberation Times

Using Feed Forward Neural Network and Finite

Element Analysis

6.1. Introduction

The purpose of this chapter is to investigate the reliability of System 1

and System 2 on actual rooms. The estimation form both systems were used to

simulate the reverberation times using FFNN and FEA. The FFNN and FEA were

compared to identify the capability of the simulation of reverberation times.
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6.2. Feed Forward Neural Network Implementation

6.2.1. Source of Data

As a forementioned, the FFNN required database for training process.

The author used eight simulation rooms and five types of furniture as illustrated

in Figure 6.1 and Figure 6.2. By random combinations of rooms and furniture,

about 20 rooms were obtained. These rooms were simulated using FEA to obtain

the reverberation times. In this simulation, six absorption coefficients of material

surfaces wall, door, floor, window, ceiling and furniture were considered at this

stage. Basically, the absorption coeficient values (ranging 0 to 1) depend on the

type of material either reflective of absorptive. To consider all the absorption

coefficient values, it is necessary to increase computing times; however, this in-

creases the cost of FEA. To overcome the problem, two kinds of conditions were

considered;

1. dead: αwall = 0.08, αdoor = 0.1, αfloor = 0.06, αwindow = 0.4, αceiling = 0.4,

αfurniture = 0.4

2. live: αwall = 0.02, αdoor = 0.02, αfloor = 0.02, αwindow = 0.04, αceiling = 0.2,

αfurniture = 0.4

Dead is the maximum value of absorption coefficient, whereas live is the minimum

value of absorption coefficient. These conditions were obtained from several ma-

terial surfaces at Oita University’s rooms. The following equation 6.1 is expected

to generate the reverberation times. 1220 databases of reverberation times were

created.

RT = fFEA[αwall, αdoor, αfloor, αwindow, αceiling, αfurniture, Swall, Sdoor, ...
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....Sfloor, Swindow, Sceiling, Sfuniture, X, Y, Z, rpx, rpy] (6.1)

where, S is surface area of material, X, Y, and Z is room dimension, respectively

for x axis, y axis and z axis.

6.2.2. Development of Feed Forward Neural Network

Database of 1220 reverberation times obtained form 20 simulated rooms

by FEA were fed into FFNN. Database is needed to normalize between 0.1 - 0.9.

The normalization can be expressed using the equation 3.1. The database was

divided into two subsets which are training subset and validation subset. The

propotions of the subsets are 70% of databases for training subset and 30% of

databases for validate subsets. To develop the architecture of FFNN, 17 pa-

rameters are to be taken as a set of input parameter of FFNN and one output

parameter. The function of FFNN can be simplified as follows;

RT = fFFNN [αwall, αdoor, αfloor, αwindow, αceiling, αfurniture, Swall, Sdoor, ...

....Sfloor, Swindow, Sceiling, Sfurniture, X, Y, Z, rpx, rpy] (6.2)

To comfirm the reliability of the estimation, 360 unseen data of rever-

beration times were obtained from six simulated rooms.
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Figure 6.2.: Five types of number of furniture

Figure 6.3.: Comparison of reverberation times between FFNN and FEA

6.2.3. Performance of Feed Forward Neural Network

From the analysis, the optimum network is [4,11,1] with training and

validation subsets indicate MSE ≤ 0.001 with the correlation coefficient R ≥ 0.9

for both subsets. To comfirm the performance of reverberation times estimation,

the unseen databases were used. A comparison between FFNN and FEA indi-

cated MSE ≤ 0.007 and correlation coefficient R ≥ 0.8 (Refer. Figure 6.3). At

this stage, the FFNN was useful for estimating the reverberation times of rooms.

Results yielded a good reliability for the estimation of reverberation times on the

unseen databases.
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6.3. Implementation in Actual Rooms

6.3.1. Actual Rooms Descriptions

Here, two types of rooms with different volumes (130 m3 and 260 m3)

taken from Oita University were used. Normally, a room contains of number of

pieces of furniture (desks and chairs). Thus, the furniture was added to investigate

the effects of reverberation times between measurements and estimates using

System 2.

For the analysis, in each room we added two types of furniture. Type 1:

Room 1 and Room 2 have 130 m3, Type 2: Room 3 and Room 4 have 260 m3.

Room 1 was added simulations furniture and Room 2 was added from measured

furniture as shown in Figure 6.4 (a) and (b), respectively. Room 3 was empty

room and Room 4 was added from the measured furniture as shown in Figure 6.4

(c) and (d), respectively. The description of dimensions of rooms can be referred

to in Table 6.1.

The measured furniture was measured from one desk and one chair.

Then, each desk and chair were combined and increasing the number of num-

ber Referring to Figure 6.5 that we used for analysis, the desk and chair seemed

to have a complicated design which made it difficult to measure the dimensions

especially using System 2. Therefore, in this case, the author only considered

the important dimensions of the desk and chair. The important dimensions are

shown in Figure 6.6 (a), (c) and (e). Thus, the desk and the chair were designed

by following simulation funiture. Figure 6.6 (b), (d) and (f) show a schematic

drawing for a desk and a chair that were used for the next analysis.
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Table 6.1.: Dimension description of rooms

Type room axis door 1 door 2 window 1 window 2 furniture
of room axis (m) axis (m) axis (m) axis (m) axis (m) total area

x y z x y x y x y x y (m2)
1 7.08 6.09 3.02 1.95 2.00 2.55 2.00 6.24 1.71 x x 25.14
2 7.08 6.09 3.02 1.95 2.00 2.55 2.00 6.24 1.71 x x 32.14
3 14.18 6.11 3.00 2.15 2.20 2.55 2.20 6.03 1.7 6.09 1.7 empty
4 14.18 6.11 3.00 2.15 2.20 2.55 2.20 6.03 1.7 6.09 1.7 28.71

(a) (b)

(c)

Figure 6.5.: Types of furniture
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6.: Important dimensions and schematic drawing of funiture

78



6.4. System 1 Implementation

For System 1, 294 images of material surfaces were obtained (surface

(a) = 60 images, surface (b) = 53 images, surface (c) = 48 images, surface (d) =

63 images, surface (e) = 41 images, and surface (f) = 25 images). A limitation

(x̄− sv) and (x̄+ sv) of coefficient values for all images was calculated by using

the procedures described above. Surfaces consisting of coefficient values within

the limit were used to feed into FFNN.

Based on this limitation, there are 61% from 294 images (surface (a) = 32

images, surface (b) = 35 images, surface (c) = 33 images, surface (d) = 31 images,

surface (e) = 26 images and surface (f) = 23 images). Images of surface materials

that consist of coefficient values within the limitation were fed into FFNN. Figure

6.7 shows the limitation of four coefficient values for the six surface images that

were used for FFNN.

6.4.1. Results and Discussions

Figure 6.8 reveals that prediction by System 1 yields a good correlation

coefficient R ≥ 0.90. Unfortunately, estimations on 3 Surface (d) (a = 0.04)

showed inconsistent results because 29% of 31 surface images were below the limit

at ASM training surface image database as shown in Figure 6.9. The window is

a transparent and has a light-reflecting material. In this case of a transparent

window, it is difficult to capture consistent images of material surfaces because

of their surface characteristics.
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(a) wall (b) door

(c) floor (d) window

(e) ceiling (f) carpet

Figure 6.7.: Limitation of coefficient values for six surface images

80



Figure 6.8.: System 1 and actual classification in actual rooms

Figure 6.9.: Comparison limitation of ASM between training and actual for win-
dow
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6.5. System 2 Implementation

At System 2, the target objects were the wall, floor, ceiling, door, win-

dow, and furniture. These objects were captured by using a camera and fed into

DVP to identify the dimensions. The same procedure (ruler method) as explained

in subchapter 4.2 were employed. Figure 6.10 and Figure 6.11 show an example

of two rooms that were used to measure the objects. The main part was the cor-

responding points located at the objects and in the line connection line between

two corresponding points.

6.5.1. Results and Discussions

Figure 6.12 illustrates the estimation results of room dimensions. Fol-

lowing the capture procedure, the System 2 yeilds high correlation coefficient R

≥ 0.99 with MSE ≤ 0.200 in estimating the dimensions. Figure 6.13 and Figure

6.14 show a comparison of schematic drawing between measured dimensions and

System 2 estimations.

6.6. Reverberation Times Estimation Using Feed Forward

Neural Network and Finite Element Analysis

To estimate the reverberation times, the FFNN and FEA use same

input parameters obtained from System 1 and System 2. Referring to the results

of System 1, window surface shows inconsistent results. The reason for this is

that at this stage it was necessary to investigate the reliability of estimation

reverberation times using FFNN and FEA. Therefore, the author used the actual

classification numbers.
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Figure 6.12.: System 2 dimensions and measured dimensions for actual rooms

As mentioned previously, System 1, the classification numbers represents

the type of material surfaces. At the same time, the absorption coeffiicents were

also obtained as shown in Table 3.3. However, the simulation of rooms were

included the furniture. In this case, the absorption ceofficient of the funiture of

0.4 was used.

System 2 are obtained the dimension of rooms. To obtain the reverber-

ation times, the receiving points were set at certain locations in a room. Two

rooms (Room 1 and Room 2) were set with 25 receiving points each. The other

two (Room 3 and Room 4) were set with 27 receiving points each. The totals of

receiving points of the four rooms were 104.

6.6.1. Results and Discussions

Reverberation times were obtained by FEA using the parameters from

System 1 and System 2 (RTFEA system) are compared with reverberation times

obtained by FFNN using parameters from System 1 and System 2 (RTFFNN sys-

tem). The results indicate correlation coefficients R ≥ 0.3 shown in Figure 6.15.
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Figure 6.15.: Comparison between RTFFNN system and RTFEA system for actual
rooms

However, reverberation times obtained by FEA using parameters obtained from

systems System 1 and System 2 (RTFEA system) are compared with RTs by FEA

using actual absorption coefficients and dimensions (RTFEA actual) in Figure

6.16. This process yielded practical results of reverberation times at 104 receiv-

ing points with correlation coefficient R ≥ 0.85 and MSE ≤ 0.008, which means

that the reverberation times can be simulated well by FEA using both systems.

Results revealed that the techniques of Systems 1 and 2 provide good

identification capability to actual rooms and at this stage both are also useful to

simulate the reverberation times of rooms using FEA.

6.7. Summary

The above mentioned results indicate that System 1 and 2 are able to

identify the material surfaces and dimensions of rooms. The reliability of both

systems were confirmed in actual rooms with the correlation coefficient R ≥

0.90, and we employed their identifications to simulate reverberation times of the
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Figure 6.16.: Comparison between RTFEA actual and RTFEA system for actual
rooms

rooms using FEA. FEA is one of the computation technique used for simulating

rooms sound field. The System 1 and System 2 show potential for use in other

techniques e.g. ray-tracing, FEA, BEA Sabine and Eyring. FFNN is also can be

used for estimating the reverberation times [65]. However, further investigation

is necessary to imporve the performance of estimations.

88



Chapter 7.

Conclusion

7.1. Summary

The aim of this research was to develop systems for identifying material

surfaces and estimating room dimensions by using photographic images. System

1, using GLCM, was adopted to analyze the texture features of image of material

surfaces. The Haralick coefficients were fed into FFNN to identify the surface

material. Simultaneously, the absorption coefficient is obtainable. System 2,

comprising DVP and the "ruler method", was used to identify the dimensions of

rooms.

System 1 in Chapter 3; six material surfaces were used to develop the

system that can identify the material surfaces. To identify such material surfaces

two techniques were implemented known as; i. Gray Level Co-occurrence Matrix

with Haralikc coefficients ii. Feed Forward Neural Network. The GLCM function

is to extract the image into statistical approach. It is difficult to implement

directly. Therefore, four Haralick’s coefficients were used as follows; i. contrast,

ii. correlation, iii. angular second moment, and iv. homogeneity. The four of

89



Haralick coefficients are coefficients values of material surface images. The FFNN

identified the material surfaces based on the coefficient values. Simultaneously,

the absorption coefficients were obtainable.

The six material surfaces were captured by using an ordinary camera.

The images material surfaces were analyzed using GLCM with Haralick’s coef-

ficients. However, the range of each material surface obtained wide range. It

occurred because of the variation of brightness and texture fixtures. To solve this

problem, a limitation for each coefficient values was made using means (x) and

standard deviations (sv). After the limitations, material surfaces of door and floor

obtained approximately similar coefficient values. To avoid redundancy during

the FFNN learning process, both were integrated into the same surface image.

The results revealed a correlation coefficient R ≥ 0.90 with MSE ≤ 0.0018

on training and validation classifications. To confirm the performance of estimat-

ing material surfaces, this study used 36 images as testing subset. Finding showed

the correlation coefficient R ≥ 0.90 with MSE ≤ 0.0075. At this stage, the per-

formance of System 1 performed efficiently.

System 2 in Chapter 3; DVP was used to develop the system that can

be estimated the dimensions. This system implemented “stereo vision princi-

ple”, which used two images captured from different positions. The object to be

measured should be viewed at both images. The object was marked with two

corresponding points. Then both corresponding points were connected by a line

that was used to measure the object dimension. Typically, both images comprised

different scales. To standardize the scale, the author proposed “ruler method”

To examine the repeatability of System 2, 100 dimensions at several

objects were examined. From analyses, the results revealed a high correlation

coefficient R ≥ 0.90 with MSE ≤ 0.009 between estimating values using System
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2 and measured values using laser measurement. At this stage, System 2 yielded

high reliability using no physical measurements.

The development of FFNN for estimating reverberation times in Chapter

4. FFNN was used to investigate the reliability for estimating the reverberation

times. FFNN requires learning database. Thus, FEA was employed to create

reverberation time’s database for FFNN learning process. A room at Oita Uni-

versity was used to obtain the reverberation times. The room surfaces of absorp-

tion coefficients are used to simulate the reverberation times. The ranging of the

absorption coefficients of the surfaces used were floor: 0.01 - 0.2, ceiling: 0.05 -

0.88, wall: 0.02 - 0.06, window: 0.03 - 0.55, and door: 0 - 0.3. More than 700

reverberation times database has been created.

The results of experiments indicated that the training subset obtained

MSE ≤ 0.0004 with R ≥ 0.90 and the validation subset obtained MSE ≤ 0.0009

with R ≥ 0.90. While, testing subset obtained with MSE = 0.0008 with cor-

relation coefficient R ≥ 0.98. To verify the performance of estimations, unseen

data was employed. FFNN showed a good agreement with MSE = 0.0004 and

correlation coefficient R ≥ 0.90.

Three conditions in an actual room were created to investigate the reli-

ability of FFNN in estimating reverberation times. The three conditions were as

follows;

1. original condition,

2. attaching tiled carpet to a door, and

3. attaching tiled carpet to a window.

The FFNN estimations of reverberation times were compared with the

estimation of reverberation times by FEA and reverberation times by
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measurement. The analyses showed that the estimation of reverberation times

using FFNN was closer to the measured reverberation times with MSE = 0.002.

At the stage, the capability on FFNN estimated in variety of absorption

coefficients showed a good agreement with measured values.

The implementation of System 1 and System 2 to simulate reverberation

times was carried out in two roms at Oita University with different volumes (130

m3 and 260 m3). Then, the different types of furniture were added in each room.

By adding some furniture, four rooms were created.

System 1 yielded good correlation coefficient R ≥ 0.90. However, window

surface showed inconsistent results because 29% of coefficient values of ASM for

actual rooms waas below the limit for coefficient values of ASM for FFNN learning

database. It was difficult to capture consistent window surface images because of

surface characteristics such as transparent and light-reflecting material. System

2 revealed a high correlation coefficient R ≥ 0.90 with MSE ≤ 0.2.

The identification parameters from System 1 and System 2 were used to

simulate rooms’ reverberation times by FEA and FFNN. Comparison between

FEA using estimation parameters from System 1 and System 2 (RTFEA system)

with FFNN using estimation parameters form System 1 and System 2 (RTFFNN

system) indicated correlation coefficient R ≥ 0.3. While, comparison between

FEA using estimation parameters from System 1 and System 2 (RTFEA system)

with FEA using actual parameters (RTFEA actual) yielded R ≥ 0.85 with MSE

≤ 0.008.

Practical systems to identify the material surfaces and to estimate room

dimensions are developed. System 1 is used to identify the material surfaces and

simultaneous the absorption coefficients are obtained. System 2 is used to esti-

mate the dimensions of rooms. Both of these systems provided good estimations

of performance.
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The estimations of room reverberation times using FFNN are developed.

The FFNN is user-friendly and can estimate the reverberation times within

1 s. The results yielded that FFNN obtained acceptable reverberation times’

estimations by comparing them with actual reverberation times.

The estimations from System 1 and System 2 were applied to FFNN

and FEA to estimate the reverberation times of rooms. Then, the reverberation

times’ estimate by FFNN were compared to the reverberation times’ estimated

by FEA and reverberation times estimated by FEA were compared with the

reverberation times estimated by FEA using actual pamateter. The comparison

results yielded reverberation times estimated by FEA showed significant results

between reverberation times estimated by FEA using actual pamateter

7.2. Recommendation for Future Studies

More work is still necessary to enhance the efficiency and applicability.

The following works are suggested:

1. Adding more the Haralick coefficients to enhance the accuracy of surface

material estimations.

2. Improving the capturing technique to estimate the dimensions precisely and

simulate rooms in 3D modeling.

3. Adding more simulation rooms and combinations of absorption coefficients

for FFNN learning process to increas the capability of estimation reverber-

ation times.
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PARAGRAH 1

I1=imread(’DSC03542.JPG’);

I2=imread(’DSC03543.JPG’);

I3=imread(’DSC03544.JPG’);

I4=imread(’DSC03545.JPG’);

I5=imread(’DSC03546.JPG’);

I6=imread(’DSC03547.JPG’);

I7=imread(’DSC03548.JPG’);

I8=imread(’DSC03549.JPG’);

I9=imread(’DSC03550.JPG’);

I10=imread(’DSC03551.JPG’);

.

.

.

PARAGRAH 2

K1 = rgb2gray(J1);

K2 = rgb2gray(J2);

K3 = rgb2gray(J3);

K4 = rgb2gray(J4);

K5 = rgb2gray(J5);

K6 = rgb2gray(J6);

K7 = rgb2gray(J7);

K8 = rgb2gray(J8);

K9 = rgb2gray(J9);

K10 = rgb2gray(J10);

.

.
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.

PARAGRAH 3

offset=[0 1;-1 1;-1 0;-1 -1];

glcms1=graycomatrix(K1,’Offset’,offset);

glcms2=graycomatrix(K2,’Offset’,offset);

glcms3=graycomatrix(K3,’Offset’,offset);

glcms4=graycomatrix(K4,’Offset’,offset);

glcms5=graycomatrix(K5,’Offset’,offset);

glcms6=graycomatrix(K6,’Offset’,offset);

glcms7=graycomatrix(K7,’Offset’,offset);

glcms8=graycomatrix(K8,’Offset’,offset);

glcms9=graycomatrix(K9,’Offset’,offset);

glcms10=graycomatrix(K10,’Offset’,offset);

.

.

.

PARAGRAH 4

DSC03542=graycoprops(glcms1,’Contrast Correlation Energy Homo-
geneity’);

DSC03543=graycoprops(glcms2,’Contrast Correlation Energy Homo-
geneity’);

DSC03544=graycoprops(glcms3,’Contrast Correlation Energy Homo-
geneity’);

DSC03545=graycoprops(glcms4,’Contrast Correlation Energy Homo-
geneity’);

DSC03546=graycoprops(glcms5,’Contrast Correlation Energy Homo-
geneity’);

DSC03547=graycoprops(glcms5,’Contrast Correlation Energy Homo-
geneity’);
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DSC03548=graycoprops(glcms7,’Contrast Correlation Energy Homo-
geneity’);

DSC03549=graycoprops(glcms8,’Contrast Correlation Energy Homo-
geneity’);

DSC03550=graycoprops(glcms9,’Contrast Correlation Energy Homo-
geneity’);

DSC03551=graycoprops(glcms1,’Contrast Correlation Energy Homo-
geneity’);

.

.

.

104



Part II.

Appendix II

105



PARAGRAH 1

load trainnorm2.txt

[G ,H]= size(trainnorm2);

rawdata=trainnorm2(randperm(G),1:5); % Randomize

[R Q]=size(rawdata);

P1 = rawdata(:,1); % contrast

P1 = P1’;

P2 = rawdata(:,2); % correlation

P2 = P2’;

P3 = rawdata(:,3); % ASM

P3=P3’;

P4 = rawdata(:,4); % homogeinity

P4 = P4’;

T1 = rawdata(:,5); % alpha type of material

T1 = T1’;

for i=1:R

data(1,i) = P1(i);

data(2,i) = P2(i);

data(3,i) = P3(i);

data(4,i) = P4(i);

data(5,i) = T1(i);

end

PARAGRAH 2

%NORMALIZE (0.1,0.9)

[N , M] = size(data);

for i = 1:N
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max(i) = data(i,1);

min(i) = data(i,1);

for j = 1:M

if data(i,j)>max(i)

max(i)=data(i,j);

end

if data(i,j)<min(i)

min(i)=data(i,j);

end

end

rawdata1(i,:) = 0.1+[0.8*(data(i,:)-min(i))/(max(i)-min(i))]; %
normalize (0.1,0.9)

end

randdata=rawdata1;

P=randdata(1:4,:);

T=randdata(5,:);

iitr1=1:100;

iitv1=101:134;

unseen=135:168;

trP1 = P(:,iitr1); % Input for Train

v.P = P(:,iitv1); % Input for Validate

t.P = P(:,unseen); % Input for Testing

trT1 = T(:,iitr1); % Output for Train

v.T = T(1,iitv1); % Output for Validate

t.T = T(:,unseen); % Output for Testing
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PARAGRAH 3

s1=7;% number of hidden node

net=newff(minmax(trP1),[s1 1],{’tansig’,’purelin’},’trainlm’);

net.performFcn = ’mse’;

net=init(net);

tic,[net,tr]=train(net,trP1,trT1,[],[],v,t);toc;

PARAGRAH 4

% CHECK PERFORMANCE

an1=sim(net,trP1);

e1=trT1-an1;

an2=sim(net,v.P);

e2=v.T-an2;

an3=sim(net,t.P);

e3=t.T-an3;

perf_train=mse(e1)

per_validate=mse(e2)

per_test=mse(e3)

figure [m1,b1,r1]=postreg(trT1,an1);

figure [m1,b1,r1]=postreg(v.T,an2);

figure [m1,b1,r1]=postreg(t.T,an3);
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no of dimension measured values System 2 values difference values

1 6.09 5.8902 0.19985

2 3.02 2.9829 0.03711

3 5.749 5.5796 0.16943

4 0.291 0.28851 0.0024944

5 0.36 0.31931 0.04069

6 2.716 2.6154 0.10061

7 2.214 2.1376 0.076364

8 2.01 1.9331 0.076874

9 1.2 1.1808 0.019155

10 4.504 4.4054 0.098609

11 1.2 1.2017 -0.0016729

12 4.504 4.4134 0.090565

13 5.9 5.7416 0.15845

14 5.9 5.7498 0.15022

15 0.065 0.060708 0.0042918

16 0.065 0.062569 0.002431

17 1.69 1.589 0.10102

18 1.18 1.1634 0.016647

19 1.18 1.1752 0.0047732

20 0.118 0.11189 0.0061095

21 0.069 0.062915 0.0060853

22 0.118 0.11249 0.0055139

23 0.069 0.061351 0.0076491

24 1.258 1.1733 0.084702

25 0.244 0.20449 0.039509

26 1.258 1.1918 0.066244

27 0.244 0.19639 0.047609
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no of dimension measured values System 2 values difference values

28 0.71 0.67265 0.037348

29 0.512 0.44371 0.068288

30 0.71 0.66175 0.048253

31 0.512 0.46059 0.051413

32 0.56 0.56505 -0.0050492

33 0.56 0.67017 -0.11017

34 0.56 0.58252 -0.022523

35 0.56 0.68848 -0.12848

36 7.083 6.7859 0.2971

37 3.02 2.8231 0.19688

38 7.083 6.7779 0.30513

39 3.02 2.7716 0.24837

40 2 1.8903 0.10972

41 2.214 2.1217 0.092284

42 2 1.8985 0.10149

43 2.214 2.0545 0.15946

44 2.602 2.5245 0.077509

45 2.214 2.098 0.11597

46 2.602 2.5139 0.088078

47 2.214 2.1349 0.079083

48 0.555 0.56334 -0.0083388

49 0.445 0.43485 0.010148

50 0.555 0.5667 -0.011695

51 0.445 0.43526 0.0097406

52 0.458 0.45355 0.0044537

53 0.608 0.59288 0.015117

54 0.458 0.45617 0.0018326

55 0.608 0.59116 0.01684
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no of dimension measured values System 2 values difference values

56 0.065 0.052884 0.012116

57 0.118 0.10416 0.013841

58 0.069 0.064757 0.0042435

59 0.118 0.10532 0.012676

60 0.069 0.056677 0.012323

61 0.244 0.22947 0.014533

62 1.258 1.3172 -0.05922

63 0.244 0.21683 0.027175

64 1.258 1.2849 -0.026853

65 0.71 0.75856 -0.048561

66 0.512 0.52244 -0.010436

67 0.71 0.78608 -0.076082

68 0.512 0.51386 -0.0018621

69 7.083 6.8843 0.19874

70 2.716 2.5372 0.17877

71 0.36 0.27299 0.087009

72 0.291 0.28474 0.0062649

73 7.083 7.0724 0.010631

74 0.291 0.28123 0.0097696

75 0.36 0.27171 0.088294

76 2.716 2.5113 0.20466

77 7.083 7.0911 -0.0081053

78 7.083 6.8705 0.21249

79 6.206 6.096 0.10996

80 1.69 1.5918 0.098218

81 6.206 6.0624 0.14356

82 1.69 1.5826 0.10743
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no of dimension measured values System 2 values difference values

83 1.562 1.5588 0.0031977

84 1.604 1.5317 0.072345

85 1.562 1.5534 0.0085843

86 1.604 1.5333 0.07072

87 1.448 1.4107 0.037266

88 1.604 1.5117 0.092269

89 1.448 1.3994 0.04856

90 1.604 1.5296 0.074402

91 0.065 0.056385 0.0086155

92 0.065 0.058463 0.0065372

93 1.258 1.3627 -0.10472

94 0.244 0.18516 0.058842

95 1.258 1.3268 -0.068828

96 0.244 0.22598 0.018022

97 1.258 1.361 -0.10301

98 0.244 0.21359 0.030406

99 1.258 1.3233 -0.065256

100 0.244 0.19985 0.044155
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