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Combined Natural-Convection and Radiation Heat Transfer Over an Isothermal
Vertical Plate Embedded in a Porous Medium

Kouichi.Kamiuto" and Toshihiro.Iyama"

The present study examines the effects of thermal radiation on the non-Darcian natural convection over an isothermal

vertical plate embedded in a porous medium. It is shown that, when radiation effects are taken into account in the

analysis, the resultant heat transfer characteristics increases with the temperature of a heated plate.
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1.Introduction
Natural convection in porous media has received much
attention in several areas including geophysics, thermal
insulation engineering and chemical reactor engineering,
and a large number of reports have been accumulated in
the past few decades. Earlier analytical studies of natural
convection in porous media (Masuoka, 1968; Cheng and
Minkowycz, 1977) have been based on Darcy’s law with
boundary friction and inertial effects neglected, but
recent analyses have included these effects, together with
nonuniform porosity effect (Hong, Yamada and Tien,
1987) and have clarified the validating regions of
previous heat transfer correlations quantitatively (Evans
and Plumb, 1978; Cheng, 1987). However, the effects of
thermal radiation on natural convection heat transfer in
porous media have not };et been examined in these
previous literatures.
The purpose of the present study is to circumvent this
deficiency. To this end, simultaneous natural-convection
and correlated-radiation heat transfer over a vertical
flat-plate with an isothermal wall temperature T,
embedded in a gas-filled packed bed with temperature
T, is analysed theoretically utilizing a finite-difference
scheme. Although

variable-porosity and boundary

friction effects are disregarded in the analysis, the porous
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inertial term (Forchheimer term) in the momentum
equation is taken into account. Moreover, radiative
transfer within a porous medium is analysed utilizing
correlated-radiative  properties of packed spheres
(Kamiuto, 1992; Kamiuto and San San Yee, 2005) and
the P; approximation to the equation of transfer

(Kamiuto, Saito and Ito, 1992).

2.Governing Equations

Under the assumptions that the porosity within a
porous medium is uniform and the Boussinesque
apporoximation is applicable, the governing equations
with boundary friction, convection, inertia and thermal

dispersion effects neglected are

Ou/ox+0ov/oy =0, ¢))
(u/Ky+p,Cu® =gpB(T-T,), )
o, C, (udT /&x +voT / dy)
- 3
=k, (8°T/0Y?)~divqy,
divg, =0, (40 T* - G). 4

Here, the coordinate along the hot boundary is denoted
by x and that perpendicular to it is described by y, and u
and v, respectively, represent the velocity components in
the x and y directions.

K and C are the permeability and the inertial

coefficient of a porous medium and are represented by



___2.,

Combined Natural-Convection and Radiation Heat Transfer Over an Isothermal Vertical Plate Embedded in a Porous Medium

K=d, ¢ /150(1-¢)’, (5)

C=1751-¢)/d,b. | (6)

The boundary conditions for Egs. (1) to (3) are
y=0:v=0, T=T,.

(7
y—ooiu=v=0, T=T,.

Moreover, since Eq. (3) involves the incident radiation
defined by 27 [1] (y,&)d& , the equation of transfer

governing the intensity of radiation I(y, £ ) must also be
solved, together with Egs. (1) to (3). In the present study,
we utilize the first-order spherical harmonic method (P,
approximation) to solve the equation of transfer because
this approximation has been proved to be valid as long as
the optical thickness of a medium is sufficiently large
(Harris, 1989): this is the case for almost all packed-bed
heat transfer problems.

The P, equations are written as:

dq,/dy+ p(l-w)G =4p(1-w)oT*, (8
dG/dy +3p8(1-wg)q, =0. )
These equations are subject to the following boundary
c.onditions:
y=0:ewG(0>/2+(2—5“,)q,(0)=2swozi,} )
y—00:dG/dy=0 (or g =0).

With our correlated-scattering theory (Kamiuto, 1992;
Kamiuto and San San Yee, 2005), the radiative properties
such as B, w and g appearing in Egs. (8) and (9)

may be written as

B=Qy, ~Dmd,n, |4,

a):ps’
g=-4/9,

Y2 =1+15(1-¢)-(3/4)(1-¢)’,

where 7, represents the extinction-enhancement factor.

(1D

3.Dimensionless Governing Equations
We introduce the following dimensionless quantities to

rewrite the governing equations in dimensionless form:

Da=K/x?, Fh=Cx,, Gr=gPATCK/V",
N, =k, /40T, x,, Pr=pey /'k,,

Ra=gpATx} /v?, Rad= P e, gPATx K/ k,v,
u =ul(Kgp, AT/ p),

v =v/(Kgp,PAT /1),  x" =x/x,,
v =y/x,, I'=x,/d,,
0=T-T)/T,-T.,),

0, =1,/Ty,4, =k, /k,,

7y = f-x, =1.50' 2y, -DA-9),
x1=Glol,, w=qx,/kT,,

(12)
where Gr represents the modified Grashof number,

Rad the Darcy-Rayleigh number and these quantities

may be rewritten as

(13)

Gr = RaDa’ Fh,
Rad = RaDa Pt/ A,

Introducting these variables yields the governing

equations of the form:

ou"/ox" +ov' /oy =0, (14)
w' +Gu' =0, (15)

u (00/x")+v'(80/0y") =
(1/ Rad)o6” 12y”" — ¢, (1~ )/ N, Rad(1 - 6,)]
<fa-0.)0+6.) - z/4]

(16)

The relevant boundary conditions can be rewritten as

y =0:v"=0, 0=1,
* * * (17)
y —ooiu =v =0, #=0.

The P, equations may also be rewritten in dimensionless

form:

dy /dy" +{r,(1- @)/ 4N, }y

18
={r,(1-w)/ N {1-6,)0+6,}", e
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dyldy” +127, (1 ~)N 0 19) equation of the second order with respectto X :
X ay To,(l—og)Nzy = V.
2" =37 (1 - o)1~ w@)x" / Rad)y
The corresponding boundary conditions are N n
=-1202(1 - @)(1 - wg)(x" / Rad)6".
y =0:
~ (28)
&, 0(0)/2—(2—¢,)/3r,(1— dy/dy
Wl(z) [( 2 ag)]( ) (20) The boundary conditions for Eq. (28) are
= sép
¥ —: dy/dy =0 n=0:

4 Variable Transformation
The continuity equation (14) may automatically be

satisfied by introducing the stream function !/7 :

u' =0y /0y",
* '//~ J @1
v =-0w /ox".
In addition, let us introduce the following variable

transformations proposed by

Masuoka (1968):

7 =x"/ Rad{ (), 22)
n=y"VRad/x". (23)

Substitution of Egs. (22) and (23) into
Egs. (15) and (16) yields

&'+ Grlg apl =6, (24)
or &'(1)= [— 1441+ 4@1‘6’(7])] 12Gr  (25)
SO () 2+0"(n) =

e, (- @)x" 1 Radi, (1-0.)] 26)

X [{(1 -0,)0+0,} —x()/ 41

which are subject to the following transformed boundary
¢ =0, 0=1,

=0, 6=0 } @

The primes indicate differential with respectto 77.

conditions:
n=0:
n —>» 00

On the other hand, substitution of ¥ obtained from

Eq.(19) into Eq.(18) yields an ordinary differential

£y 2(0)/2-[(2—£,)/37,(1-ag)]

= (29)
x\ Rad ! x" y'(0)=2¢&,,

n—o:y =0.

It should be noted that, when radiation is taken into
account, the transformed energy equation depends not

only on the similarity variable 7 butalsoon X "

5.Heat Transfer Evaluation
The total heat flux at a heated plate is given by

q, =~k (0T /&) |, +4,(0)
= h(Ty —T..),

where h represents the local heat transfer coefficient.

(30)

The local Nusselt number may be defined as

Nu, =hx/k,

= [— JRad ¥ 0(0)+{x /(1 aw)}y/(O)}

(1)
Rearranging Eq. (31) yields
Nu_ /N Rad-x'
=[-00)- Y O/{125,0-@)N,(1-0,)}}

(32)

The mean Nusselt number over a heated plate can be

evaluated as
Nu, = £(Nux / x")dx"
= [VRad -x"[-0'(0)
2 OV(127,(1- 0N, (1-6, )} Jdx.

(33)
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6.Numerical Methods

Governing equations (25) (26) and (28) were solved
numerically using a finite-difference scheme: all
derivatives with respect to 77 appearing in these
equations were represented by a central-difference
scheme and a region of 7 from 0 to 30 was divided
into 5000 equally spaced increments for finite difference
calculations. A simple recurrence relation between ¢ (i)
and ¢ (i-1) can be derived from the discretized form for
the momentum equation and consequently a value of
¢ (i) at any lattice point may be evaluated readily from a
value of ¢ (i-1), provided that a temperature distribution
is known in the righthand side of Eq. (25).

On the otherhand, finite difference equations for the
energy equation or the P, equation constitute a set of
simultaneous linear equations in the tridiagonal form and
thus can be solved readily utilizing the band matrix
method. Actual computations have been done according
to the following procedures: First to obtain the first
approximation to ¢ ( 7 ;) we assume a uniform
temperature distribution such as 6 =0. Utilizing thus
determined values of £ (1) and 8(7n;), we solved a
set of simultaneous linear equations for X (7).

Once values of x (1) were obtained, the finite
difference equations for 8 (77;) can be readily solved.
Thereafter, the derived solution for 6 (7;) was utilized
to obtain new solutions for ¢ (77;) and x(n;), and
similar computations were performed until the following
satisfied:

convergence criterion is

o - 9("’”)/9"”3 <107, (34)

where the subscript n represents the nth iteration.

7.Range of Parameters used in Numerical
Computations

Values of the system parameters such as 0., Gr,
Rad ,Ny, T,, w,and g must be prescribed before

numerical computations, but these parameters depend

each other, and therefore they could not be specified

arbitrary. In the present study, we assume a
packed-sphere system consisting of 4MPa helium and
0.005m diameter ceramic spheres with k,=1.05 (W/mK)
and 0 ~0.1. The spheres were assumed to be
randomly-packed, and thus the porosity of a bed is 0.39.
The length of a hot plate embedded in a bed was varied
as 0.1, 0.5, 1.0 and 10 (m). Under. these conditions,
values of the Darcy number for the present system are
less than 2.7 X 10, and this justifys to disregard ﬂle
boundary friction term in the momentum equation
(Evans and Plumb, 1978). The hemispherical emissivity
of a hot plate was assumed to be unity and a ratio of an
ambient temperature to a plate temperature 6 . was
kept at 0.9 for all the cases examined here. Values of
physical properties of 4MPa helium such as v, k; and
Pr were evaluated at a representative temperature T,
defined by Tw-0.38(Tw - To) (K).

Dimensionless effective thermal conductivity of the
packed bed was evaluated utilizing Bruggeman’s theory

(Kamiuto, 1990) and was given as
A, =k, Ik,
— (K _ 1)Kl/3¢

x[{/(—nﬂ)/z —i/(1+«/2)/2]+x,

(35)
where A = 1+(4/27) ® (K -1)/ K *.
The range of the system parameters used in the present

computations is summarized in

Table 1.

Table 1. Ranges of variables used in the present

numerical computations.

-~ 5,
= 1 Fo 2]

Ty 1K} & 0.1 0.3 1.0 | 180 | o1 0.5 1.0 10.0
1000 !.!!63{10” 1.97% 5.894 l!.YiT 197.87 0.0312 v.00622 | 0.00311 0.000311

00 |1.266x1077 | 3.m2s | 1s.122 | as.zas | se2.45 | o.0s77 | o.o11s | o.wes77 | 0.co0s7r

600 §3.303210™2 | 8.821 | 44.103 | 8p.207 | maz,07 | 0.127 | 0.025¢ | o.camy | 0.0m127
400 § 2.254x107} [ 28,843 144,715 | 289.433 | 2894.33 | 0.3:1 0.0782 0.0281 0,00351
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8.Results and Discussion

Computational results are summarized in Figs. 1 to 4.
Results of velocity profiles are not shown here because
the x* component of the velocity can be directly
evaluated from a temperature distribution using Eq. (25).
Here, it should be noted that u'=¢ (7).

Figure 1 shows the effects of the dimensionless
position x' along a vertical plate on temperature
distributions. The broken line in this figure corresponds
to the temperature profile for the case without radiation.
Temperature profiles evaluated under consideration of
the effects of thermal radiation rise higher over an entire
region of 7 than those without considering radiation.
This is due to the fact that porous media can absorb
thermal radiation emitted from the hot boundary and thus
its temperature is lifted up. It is of interest to note that
temperature profiles obtained by accounting for thermal

radiation scarcely depend on the dimensionless position

*

X.
10 :
Tw=1°00(K)4 xo=1 {m),
6y=5956x103 8509,
@05
=3
] 4MPaHe-Ceramic Spheres
i - === without radiation
L PP M LT [} Ll
0 5 . 10 15
n
Fig.1. Effects of the dimensionless streamwise

. * . . .
distance x on temperature distributions.

Figure 2 depicts the effects of a plate temperature Ty
on temperature profiles of a porous medium at x*=0.5.
Temperature profiles for pure convection depend on Ty
through a temperature dependency of ér, but, as seen
from this figure, this effect is quite negligible. Thus, the
observed  plate-temperature  dependencies of a
temperature  distribution within a medium may be

attributable to the effects of thermal radiation from a hot

boundary: the radiation emitted from a hot boundary

becomes larger as the boundary temperature rises higher.

10

X"=0.5,%o=1(m),
8.50.9,2=0.1,
67 1.0

- W\ Tw=1000{K),Ng=0.00311

@ 05f

- Tw=400(K),Ng=0.0391

- 4MPaHe-Ceramic Spheres

- ----:without radiation

0 5 10 15

n
Fig.2. Effects of a heated plate temperature Ty on

temperature distributions.

Variations in Nu, /VRad -x* against x s

depicted in Fig. 3 for different values of Ty,. As expected,

the local Nusselt number increases with T'y. The result of

pure Darcian natural-convection (G7 =0) is shown by

the broken line, corresponding to

Nu,/Rad-x* =04437 (Masuoka, 1968). The

present numerical results of Nu /v Rad -x* for

pure natural-convection accounting for the Forchheimer
term in the momentum equation vary from 0.4383 to
0.4424, corresponding to the boundary temperature of
600~ 1000 [K]: The effects of the Forchheimer term on
the heat transfer characteristics are comparativé'/ly small,
and thus the difference observed between the broken line
and the solid lines in this figure is due to the effects of
radiation.

Figure 4 shows the relationship between the mean

A

Nusselt number and R ad . The broken line shows the

theoretical results obtained by Masuoka (1968) for
Darcian natural-convection over an isothermal vertical

plate. The present results for.pure natural convection
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under consideration of the Forchheimer term are about
5% smaller, in the worst case, than that predicted from
Masuoka’s correlation, but, as seen from this figure, the
difference between our result and Masuoka’s correlation

is quite negligible. The mean Nussselt number for

non-Darcian natural-convection (Gr #0) can be

evaluated utilizing Pohlhausen’s method and the
resultant correlation may be written in the following

form:
Nu,, = f(GrWRad (36)

1(Gr)=[-2/3)-Gr + (4Gr +1)"*
% (8Gr +1)/16- {In(2Gr ++/4Gr +1)}/32/Gr /6o

(37

This correlation is about 1.4% higher, in the worst case, -

than the exact numerical results. It can be seen from
Fig.4 that the mean Nusselt number for the case
considering radiation increases steadily with a plate
temperature T,, and that, at T,=1000 {K], Num is 30%

higher than that for pure natural-convection.

1 .
0 L )G=1(m), 4.0, 4MPHe-Ceramic Spheres
08 | A701. &710
I Tw=1000 (K)
[;EO.G =
b - <
04t \\T“FBOO(K)
N
To=
Z 02t w= 600(K)
L ———~:without radiation
0 0.2 0.4 0.6 1] 10

by

Fig.3. Variations in the local heat transfer parameter

Nu_/ Rad - x" along the x" axis.

4MP, He~ Ceramic Spheres -

key Twik)
o 400
A 600 =
00 oo

[ Voo ol

85=0.9,A,=0.1,6,=10

-~=—->without radjation
(Nu;=0.887Rad®5)
/Y‘ SOl | 21l 1 (AN RN ]  + lanal L 1 31

WX

61100 0 ‘ 1% 103 10*

Rad

T TITY

T Ty

Fig.4. Relations between the mean Nusselt number and

the Darcy-Rayleigh number.

9.Conclusions
The major conclusions that can be derived from the
present study are summarized as follows:

1. Temperature  distributions  obtained  under
consideration of thermal radiation scarcely depend
on the dimensionless position x* along a vertical
heated plate.

2. Temperature distributions rise higher as a hot
boundary temperature increases.

3. An analytical expression for the mean Nusselt
number for pure non-Darcian natural convection
Eq.(36), was dedrived.

4. The mean Nusselt number over a heated plate
increases with a hot boundary temperature Ty, since
heat transfer from a hot boundary at high
temperatures is augmeﬁted by the presence of
thermal radiation toward porous media. However,
radiation did not affect the results by more than 30%

even at Tw=1000 [K].

Nomenclature

C: inertial coefficient, Eq.(6)
C,: specific heat of gas

Da: Darcy’s number

D,: particle diameter

Fh: Forchheimer coefficient

f (ér) - a function of the modified Grashof number
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G: incident radiation

ér : modified Grashof number

g: gravitational constant

§ : asymmetry factor of the surface phase function of

packed spheres

h: heat transfer coefficient

I(y, £ ): intensity of radiation

K: permeability, Eq.(5)

k.: effective thermal conductivity of a packed bed
k¢ thermal conductivity of the continuous phase

k: thermal conductivity of the dispersed phase

Ng: conduction-radiation parameter

Nu,: local Nusselt number

Nu,,: mean Nusselt number

n,: number density of packed spheres

P,: Prandtl number

&’,_ : radiative heat flux vector

q;: cross-stream component of the radiative heat flux

vector A

q.: total heat flux at the hot boundary

Ra: Rayleigh number

Rad : Darcy-Rayleigh number

T: temperature
T,: representative temperature

Ty: hot boundary temperature

T..: temperature at a distance from the hot boundary
u: velocity parallel to the hot‘ boundary

x: streamwise coordinate

Xo: length of the hot boundary

y: cross-stream coordinate

B : coefficient of thermal expansion

I": dimensionless length of the hot boundary

¥ ,: extinction-enhancement factor

AT : temperature difference(=T,-T.)

€ .+ hemispherical emissivity of the hot boundary

71 : dimensionless similarity variable

6 : dimensionless temperature '

6 ..: dimensionless temperature at a distance from the

hot boundary

K : a ratio of the thermal conductivity of solid to that of a
fluid
Am: dimensionless effective thermal
conductivity of a packed bed

- fluid viscosity

v : kinematic viscosity of a fluid

& : cosine of the angle between the normal to the hot
boundary and the direction of propagation of
radiation ‘

0 ¢ density of a fluid

0 . hemispherical reflectivity of packed spheres

0 : Stefan-Boltzmann’s constant

O ,: absrorption coefficient

T o: optical thickness

@ : mean porosity

X : dimensionless incident radiation

1 : dimensionless heat flux

& : dimensionless stream function

w: albedo

Superscript

*.dimensionless quantity
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