Figure S1

(a)

KC991142 optimized

KC991142 optimized

KC991142 optimized

KC991142 optimized

KC991142 optimized KC991142 optimized

KC991142 optimized

KC991142 optimized

KC991142 optimized KC991142 optimized

(b)

KC991145
optimized
KC991145
optimized
KC991145
optimized

KC991145 optimized

KC991145
optimized
KC991145
optimized

KC991145 optimized

KC991145
optimized
KC991145
optimized

KC991145 optimized

1 ATGGCGCGTAAGGTCGATCTCACCTCCTGCGATCGCGAGCCGATCCACATCCCCGGCAGCATTCAGCCGTGCGGCTGCCTGCTAGCCTGCGACGCGCAGG

101 CGGTGCGGATCACGCGCATTACGGAAAATGCCGGCGCGTTCTTTGGACGCGAAACTCCGCGGGTCGGTGAGCTACTCGCCGATTACTTCGGCGAGACCGA

201 AGCCCATGCGCTGCGCAACGCACTGGCGCAGTCCTCCGATCCAAAGCGACCGGCGCTGATCTTCGGTTGGCGCGACGGCCTGACCGGCCGCACCTTCGAC

301 ATCTCACTGCATCGCCATGACGGTACATCGATCATCGAGTTCGAGCCTGCGGCGGCCGAACAGGCCGACAATCCGCTGCGGCTGACGCGGCAGATCATCG

401 CGCGCACCAAAGAACTGAAGTCGCTCGAAGAGATGGCCGCACGGGTGCCGCGCTATCTGCAGGCGATGCTCGGCTATCACCGCGTGATGTTGTACCGCTT

501 CGCGGACGACGGCTCCGGGATGGTGATCGGCGAGGCGAAGCGCAGCGACCTCGAGAGCTTTCTCGGTCAGCACTTTCCGGCGTCGCTGGTCCCGCAGCAG

601 GCGCGGCTACTGTACTTGAAGAACGCGATCCGCGTGGTCTCGGATTCGCGCGGCATCAGCAGCCGGATCGTGCCCGAGCACGACGCCTCCGGCGCCGCGC

701 TCGATCTGTCGTTCGCGCACCTGCGCAGCATCTCGCCCTGCCATCTCGAATTTCTGCGGAACATGGGCGTCAGCGCCTCGATGTCGCTGTCGATCATCAT

801 TGACGGCACGCTATGGGGATTGATCATCTGTCATCATTACGAGCCGCGTGCCGTGCCGATGGCGCAGCGCGTCGCGGCCGAAATGTTCGCCGACTTCTTA

901 TCGCTGCACTTCACCGCCGCCCACCACCAACGCTAA
AGT........T..G..T.. A.....T. . GA.A.G.

ATGGCGGAAGGATCCGTCGCCAGGCAGCCTGACCTCTTGACCTGCGACGATGAGCCGATCCATATCCCCGGTGCCATCCAACCGCATGGACTGCTGCTCG

101 CCCTCGCCGCCGACATGACGATCGTTGCCGGCAGCGACAACCTTCCCGAACTCACCGGACTGGCGATCGGCGCCCTGATCGGCCGCTCTGCGGCCGATGT

201 CTTCGACTCGGAGACGCACAACCGTCTGACGATCGCCTTGGCCGAGCCCGGGGCGGCCGTCGGAGCACCGATCACTGTCGGCTTCACGATGCGAAAGGAC

301 GCAGGCTTCATCGGCTCCTGGCATCGCCATGATCAGCTCATCTTCCTCGAGCTCGAGCCTCCCCAGCGGGACGTCGCCGAGCCGCAGGCGTTCTTCCGCC

401 GCACCAACAGCGCCATCCGCCGCCTGCAGGCCGCCGAAACCTTGGAAAGCGCCTGCGCCGCCGCGGCGCAAGAGGTGCGGAAGATTACCGGCTTCGATCG

501 GGTGATGATCTATCGCTTCGCCTCCGACTTCAGCGGGTCCGTGATCGCAGAGGATCGGTGCGCCGAGGTCGAGTCAAAACTAGGCCTGCACTATCCTGCC с. . A. . . . A. TTС. . . СА

601 TCATTCATCCCGGCGCAGGCCCGTCGGCTCTATACCATCAACCCGGTACGGATCATTCCCGATATCAATTATCGGCCGGTGCCGGTCACCCCAGACCTCA

701 ATCCGGTCACCGGGCGGCCGATTGATCTTAGCTTCGCCATCCTGCGCAGCGTCTCGCCCAACCATCTGGAGTTCATGCGCAACATAGGCATGCACGGCAC

801 GATGTCGATCTCGATTTTGCGCGGCGAGCGACTGTGGGGATTGATCGTTTGCCATCACCGAACGCCGTACTACGTCGATCTCGATGGCCGCCAAGCCTGC

901 GAGCTAGTCGCCCAGGTTCTGGCCTGGCAGATCGGCGTGATGGAAGAGTGA
..A..C..T..A. . . . С.

Fig. S1. DNA sequences of codon-optimized (a) iRFP670 and (b) iRFP720 genes. KC991142 and KC991145 are the GenBank accession nos. for iRFP670 and iRFP720, respectively. Dots indicate identical nucleotides.

Figure S2

Fig. S2. Fluorescence focus assay of recombinant viruses was performed as illustrated in Fig. 2. In addition, nuclei were stained with Hoechst 33342. Images were obtained using the EVOS FL fluorescence microscope with Light Cubes for DAPI (Hoechst 33342), GFP (the N protein), Texas Red (Ka2S and E2Cr), and Cy5.5 (iRFP670 and iRFP720). Bars indicate $100 \mu \mathrm{~m}$.

Figure S3

Fig. S3. Progression of disease in ddY mice inoculated i.c. with 10^{2} f.f.u. of each virus shown in Fig. 3. "Mild neurological signs" indicates that mice showed a foot slip on a stainless steel wire top clip of a mouse cage without paralysis. "Moderate neurological signs" indicates that mice showed paralysis of the hind limb(s). Mice that showed severe neurological signs such as opisthotonus or were moribund (i.e., in a deep coma) were humanely euthanized and classified as "dead".

Figure S4
(a)

655/732

710/785

(b)

Fig. S4. Detection of fluorescence signals from NA cells infected with recombinant viruses using the Lumazone imaging system. (a) Each virus solution was mixed with NA cells (4×10^{4} cells/well) at a m.o.i. of 3, and the mixture was seeded on Sumilon 96-well black plates (Sumitomo Bakelite). After 24,48 , or 72 h of incubation, cells were fixed with 4% paraformaldehyde and then imaged using filter sets, $607 / 697$ ($607 / 36 \mathrm{~nm}$ for excitation; $697 / 75 \mathrm{~nm}$ for emission), $655 / 732$ ($655 / 40 \mathrm{~nm} ; 732 / 68$ nm), and 710/785 ($710 / 40 \mathrm{~nm} ; 785 / 62 \mathrm{~nm}$). Because the source of the excitation light was obliquely placed, signals were detected only from the upper half of the well. Color bars indicate relative signal intensities. (b) S / N ratios (test well/mock well) were calculated for each filter set and time point and are presented as means and standard deviations (SD); $\mathrm{n}=4$.

Figure S5

\square	No signs
\square	Body weight loss

Mild neurological signs
Moderate neurological signs

Fig. S5. Progression of disease in nude mice inoculated i.c. with 10^{4} f.f.u. of each virus as illustrated in Figs. 4 and 5. As described in the legend for Fig. S3, "mild neurological signs" indicates that mice showed a foot slip without paralysis, and "moderate neurological signs" indicates that mice showed paralysis of the hind limb(s).

Figure S6

Fig. S6. Ex vivo fluorescence imaging of nude mice inoculated i.c. (a) After live imaging at 8 days postinoculation (as shown in Fig. 4), all mice were euthanized, and their brains were isolated. Before being subjected to titration, these brains were imaged using the Lumazone imaging system with the filter sets 607/697, 655/732, and 710/785. Color bars indicate relative signal intensities. (b) S / N ratios (test/mock at the region of interest, ROI) were calculated for each filter set and are presented as means and $\mathrm{SD}(\mathrm{n}=4)$. (c) The transmission rate [(signal intensity with subtraction of mock signal at in vivo imaging)/(signal intensity with subtraction of the mock signal at ex vivo imaging)] were calculated for selected combinations that showed a clear signal in live imaging (see Fig. 4), and are presented as means and $\operatorname{SD}(\mathrm{n}=4)$.

